
An Architecture for Tool Use and Learning in Robots

Solly Brown and Claude Sammut

ARC Centre of Excellence for Autonomous Systems

School of Computer Science & Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

Email:{sollyb,claude}@cse.unsw.edu.au

Abstract

In this paper we address the problem of a robot
learning to use environmental objects as tools,
in order to help it achieve its goals. Learning to
use an object as a tool involves understanding
which goals it helps an agent to achieve, the
properties of the tool that make it useful, and
how the tool must be manipulated in the envi-
ronment in order to achieve the desired goal. A
cup, for example, can be use to hold objects or
liquids, should be of the appropriate size and
shape (concave-up), and needs to be held the
right way up. We present an architecture for
a robot agent that is able to learn about ob-
jects in this way, and thereby employ appropri-
ate objects as tools to help it achieve its goals.
Our agent learns through demonstration and
experiment, with the main generalisation mod-
ule being an Inductive Logic Programming al-
gorithm.

1 Introduction

Contrary to popular belief, tool use is not a uniquely
human trait. Tool use has been observed in a wide
range of both captive and wild animals, from monkeys
[de A. Moura and Lee, 2004] to bottle-nosed dolphins
[Krützen et al., 2005]. Although most animal tool use is
instinctive and does not involve learning, some creatures
such as the New Caledonian crow are adept at both tool-
making and solving novel problems using tools [Kenward
et al., 2005]. In this paper we address the problem of tool
use and learning in robots.

The motivations for studying tool use in robots are
many. Firstly, tools are ubiquitous in the modern world
and robots will need to understand how to use them to
complete a full range of useful tasks. Robots, like hu-
mans, have limited range of e↵ectors and can use tools
to leverage their ability to solve problems in their envi-
ronment.

Secondly, tool use is a specialised form of problem solv-
ing, where the emphasis is on objects, their properties,
and interactions between objects, and between objects
and the agent. It is unlikely a general purpose problem
solver would have su�cient domain knowledge or learn-
ing bias to perform e↵ectively in this domain.

Finally, tool use is an interesting problem to study
because learning is often an essential requirement: for
achieving competence, solving novel problems, under-
standing the properties of new objects, and learning by
observing others.

Our overall research goal is to build a robotic agent
which can learn to use objects in its environment as tools,
in order to achieve its goals or to achieve its goals more
e↵ectively. Some examples of the kind of problems we
would like our agent to be able to solve are:

• Stick and tube problem: A reward object is
placed inside a horizontal tube lying on the ground.
The agent is unable to reach into the tube directly
to retrieve the reward, but instead must use a stick
tool to push the reward out of the tube before it can
be collected.

• Ramp problem: A reward object is placed on top
of a platform, out of reach of the agent. The agent
can get onto the platform by pushing a ramp over to
the platform and driving up it. Note that this is a
version of the classic monkey and bananas problem,
and the same problem faced by Shakey the robot
[Nilsson, 1984].

• Tray problem: The agent is given the task of
transporting 5 small objects from one room to an-
other, in as short a time as possible. A reward can
only be achieved by transporting all of the objects
simultaneously by placing them on a tray.

Of course, each of these examples is a straightforward
planning problem when the agent has su�cient domain
knowledge to accurately model how its actions a↵ect the
world. Shakey the robot for example, had built-in back-
ground knowledge about ramps, including a CLIMB-RAMP

behaviour and an abstract model of this behaviour which
it used for planning [Nilsson, 1984].

In this research, however, we assume that the robot
has no prior knowledge of specific properties of the tools
in its environment. Thus in in the ramp problem de-
scribed above, the agent starts out knowing nothing
about ramps. The agent’s task is to learn the necessary
domain knowledge about the ramp – through observa-
tion and experimentation – so that it can then solve the
problem as Shakey did.

The rest of this paper is organised as follows. In Sec-
tion 2 we describe previous work that has been done on
tool-use in machine learning and robotics. Section 3 de-
scribes the environment in which the robot is expected
to operate. The world state, action, and dynamics repre-
sentation we have adopted are then outlined in Section
4. Section 5 outlines our agent architecture, and the
agent’s learning methods are described in Section 6. Fi-
nally, Section 7 concludes with some discussion and an
outline of our future work.

2 Related Work

Given the significant role tool use has played in research
on human and animal cognition [Barber, 2003], it is per-
haps surprising that it has received little attention in
artifical intelligence and robotics research. Bicici [2003]
provides a survey of earlier AI research related to the
reasoning and functionality of objects and tools.

Perhaps the first attempt to build a robot agent specif-
ically tailored towards learning and tool-use is given in
[Wood et al., 2005]. In this work an artificial neural
network was used to learn appropriate postures for us-
ing reaching and grasping tools, on board the Sony Aibo
robot platform.

Stoytchev [2005] has implemented an approach to
learning tool-using behaviours with a robot arm. The
robot investigates the e↵ects of performing its innate
primitive behaviours (including pushing, pulling, or side-
ways arm movements) whilst grasping di↵erent reach-
ing tools provided by the user. The results of this ex-
ploratory learning are used to solve the task of using the
tool to move an object into a desired location.

Although there is little other research that directly
tackles the robot tool use learning problem, work in the
area of learning models of agent actions is relevant to
our approach. Benson [1996] used Inductive Logic Pro-
gramming (ILP) methods [Lavrac and Dzeroski, 1994]
to learn action models of primitive actions, and then
combined them into useful behaviours. Other work has
since focused on learning action models for planning in
more complex environments, allowing for stochastic ac-
tion [Pasula et al., 2007] or partial observability [Amir,
2005].

Figure 1: The Pioneer tackling the stick and tube prob-
lem in the Gazebo robot simulator.

3 Domain and Robot Platform

The agent architecture presented in this paper is in-
tended to be su�ciently general that it can be applied to
any robot. In this research our tool using robot platform
is a simple Pioneer 2DX with a vertical lift and gripper
attachment. Sensors include a camera, sonar array, and
laser scanner1

Although the Pioneer robot is limited to very simple
manipulation, it can perform su�ciently well to demon-
strate that the approach we have adopted for tool learn-
ing works. Indeed, agents with limited e↵ectors often
have the most to gain by employing tools to overcome
their shortcomings.

We are carrying out our robot tool use experiments
initially in simulation. This allows us to test ideas and
carry out experiments much more rapidly than would
be possible in the real world. We are using the Gazebo
robot simulator [Koenig and Howard, 2004] which has
been developed as part of the well-known Player/Stage
[Gerkey et al., 2003] suite of robot control and simulation
tools.

The Gazebo robot simulator is built on top of the
Open Dynamics Engine physics engine, which provides
for rigid body physics in three dimensions. Gazebo sup-
ports the Player interface and thus allows for robot con-
trol code to interact with the simulator through the same
client-side interace that would be used on a real-world
robot. A screen-grab of the robot tackling the stick
and tube problem in the Gazebo simulator is shown in
Figure 1.

1Our current implementation uses a noisy global GPS to
get object positions and orientations; in future work this data
will be obtained less directly, through the sensors.

4 World model

4.1 States
Two levels of world state information are available to
our agent. At the low-level the primitive state shows
the positions, velocities and orientations of the objects
and agents in the world at each time step. On top of
the primitive state we build an abstract state which is
able to explicitly represent the complex properties and
relationships which exist between objects and agents in
the world.

We write the abstract state in first-order logic, a com-
pact and expressive representation which is extensively
used in planning, reasoning and learning in relational
domains. Thus we write terms such as holding(agent,
stick), in(reward, tube) to describe the state where
the agent is grasping a stick and a reward object is in-
side a tube. The abstract state predicates are defined in
terms of the value of primitive state quantities, or other
previously defined abstract state predicates.

4.2 Actions
We provide the agent with a set of useful set of hand-
coded behaviours which allow the agent to perform com-
mon tasks. STRIPS rules [Fikes and Nilsson, 1971] are
used to model the agent’s knowledge of how these actions
a↵ect the world. Given STRIPS models of its actions,
the agent can use a standard planner to construct plans
to achieve its goals.

STRIPS action models are composed of three lists of
literals: a precondition, an add list, and a delete list.
The precondition gives the requirements for the action
to be applicable, while the add and delete lists specify the
significant changes to the world state which will occur as
a result of executing the action.

In general case, the agent begins with a set of actions
A1, A2, . . . An and a corresponding set of STRIPS action
models. These existing actions are insu�cient to achieve
the goal we present to the agent — in order to solve the
problem the agent must learn to use a tool.

In the stick and tube problem, for example, the agent
is provided with the pickup(Object) and drop(Object)
actions, with STRIPS models as shown in Figure 2.
Note that the precondition of the pickup(Object) ac-
tion model reflects the fact that the agent is unable to
pickup an object which is stuck in a tube.

5 Architecture

Our agent architecture is illustrated in Figure 4 and is
comprised of the following six modules:

• Executor

• STRIPS Planner

pickup(Object):
PRE: empty(gripper), ¬in(Object,Tube)
ADD: holding(robot, Object)
DEL: empty(gripper)

drop(Object):
PRE: holding(Object)
ADD: empty(gripper)
DEL: holding(Object)

Figure 2: Initial STRIPS action models for the stick and
tube problem. These are provided a priori to the agent,
but note that they are not su�cient to solve the problem
of picking up a reward which lies inside a tube.

push-from-tube(Object,Stick,Tube):
PRE: in(Object,Tube), holding(robot,Stick)

length(Stick,LS), length(Tube,LT), LS > LT

width(Stick,WS), width(Tube,WT), WS < WT

ADD: -
DEL: in(Object,Tube)

Figure 3: The desired STRIPS model for the stick tool
which will allow the agent to solve problems reward-in-
tube type problems. The push-from-tube action model
is not provided a priori to the agent — it must be learnt.

• Observer
• Manipulation Learner
• Motion Generator
• Generaliser

The role of each of these modules is described briefly
below.

The Executor module is straightforward: it
reactively executes existing behaviours such as
pickup(stick) at the request of the planner, and
sends the resulting commands to the robot’s actuators.

The STRIPS Planner is responsible for generating
plans which can achieve the agent’s goals, and to then
carry out these plans by sending o↵ the appropriate se-
quence of behaviours to be executed by the Executor
module (in the case of existing behaviours) or the Mo-
tion Generator (for new tool behaviours).

Any standard planner can be plugged into this module
for the purpose of generating plans, although some mech-
anism for plan monitoring and repair must be provided.
We are using a simple partial order planner [Penberthy
and Weld, 1992] in this manner.

The remaining four modules are directly involved in
learning new tool-use behaviours and tackling the learn-
ing challenges described in the next section.

The Observer module attempts to identify the pri-
mary goals of the tool-use action by watching another

GENERALISER
(ILP BASED LEARNER)

MOTION GENERATOR
(RRT PATH PLANNER)

EXECUTOR

OBSERVER

STRIPS PLANNER

GOALS FROM USER
explains rival's
example

learns new STRIPS
model for tool

MANIPULATION MODEL
LEARNER

executes existing
reactive behaviours

uses manipulation model to
achieve tool goals

learns new tool
manipulation
model

Figure 4: Agent architecture.

agent perform the task. By explaining to itself how the
rival is able solve the problem, the agent can isolate the
desired e↵ects of the action.

The task of the Manipulation Learner module is
to learn a low-level model of how the tool interacts with
objects. As detailed in Section 6.2 our agent learns a set
of motion primitives which characterise the way in which
the tool is able to influence the object. For example, a
useful set of motion primitives for the stick tool and a
box shaped reward object are illustrated in Figure 7.

The Motion Generator module is a low-level path
planning module which uses the motion primitives learnt
by the Manipulation Learner module to generate more
complex tool motions. It can, for example, plan a se-
ries of motions which results in the reward object being
pushed from the tube by the stick tool. In Section 6.3,
we describe the Rapid Random Tree (RRT) [J. Ku↵ner
and S. LaValle, 2000] planner which forms the basis of
the motion generator in our research.

Finally, the purpose of the Generaliser is to gener-
alise over tools and tasks to learn the necessary prop-
erties that the tool must satisfy in order to be useful.
This information is then incorporated into the STRIPS
action model for the tool behaviour. As described in
Section 6.4, the generalisation over first-order state and
object descriptions is performed by an Inductive Logic
Programming (ILP) algorithm.

6 Learning

Learning to use an object as a tool involves understand-
ing the following:

• which goals the tool helps an agent to achieve

• how the tool must be manipulated in the environ-
ment in order to achieve the desired goal

• the properties of the tool that make it applicable or
useful

In the stick and tube problem, for example, the desired
goal is to achieve ¬in(tube,reward). The stick tool
must be manipulated by pushing type motions, and the
required properties of the stick include being long enough
to reach all the way through the tube, as well as thin
enough to fit into the tube opening.

The useful e↵ects and properties of the tool can be
summarised in a STRIPS action model, such as the
push-from-tube model shown in Figure 3. By learning
and encapsulating this information in a STRIPS model
the agent can make use of the tool in future planning
and problem solving.

In the remainder of this section we describe how the
above learning objectives are tackled, using the stick and
tube problem as illustration.

6.1 Identifying tools and goals

E↵ective learning in the real world involves being able to
watch others and emulate their success. In our learning
tasks we give the agent an opportunity to observe the

actions of another agent which we will refer to as the
rival.

The introduction of a rival agent serves to simplify
the learning problem faced by our agent, by providing
a demonstration which focuses attention on interesting
parts of the state space. In our tool-learning tasks the
rival agent is identical to the original agent, except it
already knows how to use the tool to solve the problem.

In the stick and tube problem, the agent’s Observer
module watches the rival pickup a stick, push the reward
from the tube, and then pick up and make o↵ with the
reward. The agent then seeks to explain how its rival
managed to obtain the reward, and to thereby identify
any novel tool-using behaviour which the agent may wish
to replicate. Information about the tool used and the
sub-goal achieved is then passed to the Manipulation
Learner and Generaliser modules.

An outline of the algorithm we are using to construct
explanations of the rival’s actions is given in Figure 5.
The algorithm takes as input a time-series of world states
s1, s2, s3 . . . sn which describe the observations of the ri-
val robot’s activities. It tries to reconstruct the plan
followed by the rival by finding a consistent mapping of
its own STRIPS actions onto the time-series of states.

The algorithm begins by noting all of the actions which
are applicable in the start state. For each step in the time
series it then checks whether any of the currently appli-
cable actions (those whose preconditions were true at the
previous action transition) have terminated by virtue of
their e↵ects being achieved. If so, the action is added
to the explanation and the set of currently applicable
actions is updated.

Novel behaviours are introduced in the explanation to
account for interesting state transitions which are not
explained by the agent’s current set of action models. In
our current implementation an “interesting” state tran-
sition is defined as one in which the preconditions of an
existing action are activated, but not by an existing ac-
tion. In the case of the stick and tube problem, this
occurs when the preconditions of the pickup(reward)
are activated by the rival pushing the reward from the
tube and causing ¬in(reward, tube).

Using this algorithm the agent generates the following
explanation of its rival’s actions in the stick and tube
problem:

pickup(stick)
?novel-behaviour(stick,reward,tube)?
drop(stick)
pickup(reward)

The novel-behaviour action is of course the stick
pushing tool action push-from-tube the agent wishes
to mimic and learn to do itself. The agent notes
that this new action can be used to achieve the ef-

generate explanation
input: time-series of states
output: an explanation (a sequence of actions)
pre lits literals which occur in any action precondition
currently applicable actions applicable in start state
explanation {}
Sprev S0

for each state S in time-series
none terminated = true
for each action A in currently applicable

if Aterminates in S
append A to explanation
currently applicable actions applicable in S
Sprev S
none terminated = false
break

if none terminated
state di↵ = S - Sprev

unexplained transitions = state di↵ [pre lits
if unexplained transitions activate preconditions of
one or more actions

append ’novel-behaviour’ to explanation
record unexplained transitions as e↵ects

of novel-behaviour
currently applicable actions applicable in S
Sprev S

return explanation

Figure 5: Pseudo-code outlining the way in which ex-
planations of the rival agent’s actions are generated. An
action A terminates in a state S if it is currently appli-
cable and its e↵ects are all true in S.

fect ¬in(reward, tube) and passes this information to
the Generaliser model (which will later learn a STRIPS
model for the action). The Observer also records the
objects and tool involved in the action and passes this
to the Manipulator Learning module.

It should be noted that the explanation algorithm de-
scribed in Figure 5 is naive in some of the assumptions
it makes. In practice, we first pre-process the state time-
series to remove noisy state transitions such as the jitter
which occurs when a state literal flicks between being
“on” and “o↵” (eg. when the robot begins to grip an ob-
ject, the literal holding(Object) may appear and dis-
appear before a firm grip is established).

In addition, it is possible that more than one action
sequence might explain a given world state sequence.
We therefore impose a further constraint which demands
that all actions included in the explanation should sup-
port the preconditions of at least one action which occurs
later in the plan. A more robust explanation algorithm
is the subject of continuing work.

P1

P3P2

P5P4

P8P6

P7

Figure 6: Robot motion primitives for our non-
holonomic robot. The eight motion primitives are in-
dicated by the arrows, comprising three forward actions,
three reversing actions, and two rotate-on-the-spot ac-
tions.

6.2 Learning a tool manipulation model

The agent now has a set of goals for the new action (pro-
vided by the Observer module) and the next step is to
learn how to perform the necessary low-level manipula-
tions in order to achieve these desired action e↵ects.

We approach the problem of learning low-level manip-
ulation of the tool and object by learning a model in
the form of a set of motion primitives, and then using a
low-level path planner to sequence these primitives into
more complex motions.

As an example, consider the motion primitives for our
non-holonomic Pioneer robot moving freely on its own,
as illustrated in Figure 6. These low-level actions are
provided to the robot a priori and consist of eight possi-
ble primitives in total P1, P2, . . . P8. They correspond to
movements such as “moving forward while turning left”
and “turning right on the spot”, and comprise three for-
ward motions, three reversing motions, and two rotating
motions. Armed with this discrete set of motion primi-
tives, we can use a low-level path-planner (as described
in Section 6.3) to generate paths for robot motion from
one point to another.

In a similar way if the agent can learn a set of motion
primitives which characterise the ways the agent and tool
interact with an object, we can use the same motion
planner to generate useful tool-using behaviours.

The sorts of tool motion primitives the agent is trying
to learn are illustrated in Figure 7, which shows qualita-

P1
P4P5

Figure 7: The three most useful motion primitives
T1, T2, T3 for the robot (green) and stick tool (brown)
interacting with a box-shaped object (red). Shown are
the initial positions of the tool and object, with the re-
quired robot primitive motions P1, P4 and P5 labelled
with arrows.

tively the three most useful stick tool primitive motions
T1, T2, T3 generated in the case of the stick tool acting
on a box-shaped object.

These tool primitives are learnt in a relatively straight-
forward manner by placing the stick tool in contact
with each of the surfaces of the object and observing
the result of executing each of the agent’s own primitve
motions P1, P2, . . . P8. For example, the move-forward
robot primitive P1 results in the straight-forward push
primitive T1 (shown in the figure) when the stick end
is placed directly in front of the object. In contrast,
the same robot motion P1 produces a rather less inter-
esting tool manipulation primitive if the object initially
lies alongside the stick — in this case, the object barely
moves.

Internally, the agent represents each tool
primitive as the average vector displacement
�ToolPose, �ObjectPose which results when a given
robot motion primitive Pi is executed at a specified
tool-object contact point and orientation.

Because of the variety of di↵erent ways in which a tool
and object can interact a large number of tool primitives
can be generated. Many of these are uninteresting and
we therefore cull the set of primitives by removing those
which have a negligible e↵ect on the resulting position
of the object. A maximum limit of eight characteristic
motion primitives is then imposed by removing those
which have a similar e↵ect to others already included in
the set.

e1: neg, < length(stick1, 0.3),width(stick1, 0.15), length(tube1, 0.6),width(tube1, 0.2), colour(stick1, blue),. . .>
e2: pos, < length(stick2, 0.8),width(stick2, 0.12), length(tube1, 0.6),width(tube1, 0.2), colour(stick2, red),. . .>
e3: pos, < length(stick3, 0.6),width(stick3, 0.13), length(tube2, 0.5),width(tube2, 0.18), colour(stick3, red),. . .>
e4: neg, < length(stick3, 0.6),width(stick3, 0.13), length(tube3, 0.5),width(tube3, 0.12), colour(stick3, red),. . .>
Correct concept:
length(Stick, LS), length(Tube, LT), width(Stick, WS), width(Tube, WT), LS > LT , WS < WT

Figure 8: Some examples for the “useful-tool” concept learning problem, along with target concept. The label
(pos/neg) is followed by the (truncated) state vector describing the example.

6.3 Using the tool
Once the agent has built up a small repertoire of useful
motion primitives, it can use a low-level path planner to
use the tool to try and achieve the goals supplied by the
Observer module (eg. achieving ¬in(reward, tube)).

The motion planner we are using in this research is
a Rapid Random Tree (RRT) path planner [J. Ku↵ner
and S. LaValle, 2000]. An RRT planner is ideally suited
to this problem because it can be fed an arbitrary set
of motion primitives with which to plan a path. Errors
in the motion primitive model mean that tool-use paths
generally cannot be followed in an open loop manner,
but the speed of the RRT-based planner allows fast re-
planning.

6.4 Learning tool properties and a
STRIPS model

Having learnt to use the tool to solve the problem at
hand, the agent must now try and learn the properties
that make this type of tool useful. In the stick and tube
problem, for instance, a stick is only useful for extract-
ing the reward if it is long enough to reach all the way
through the tube, and thin enough to fit into the tube
in the first place.

The necessary generalisation across tools and objects
is performed by the Generaliser module, as described in
this section. The required properties of the tool can then
be incorporated into a STRIPS action model, as shown
in Figure 3, and the tool can be used in future problem
solving.

In order to be able to generalise e↵ectively we present
the agent with a series of di↵erent instances of the same
type of problem. For the stick and tube problem this
involves using di↵erent sized tubes and a selection of
di↵erent potential stick tools.

Identifying which properties make a stick a useful tool
for this task is a concept learning problem. A stick with
which the agent is unable to solve the task is a negative
example of a good tool for that task, and conversely a
stick which succeeds in extracting the reward is a positive
example.

Some examples defined in this way for our stick tool
problem are shown in Figure 8, along with the correct
concept to be learnt — which includes the conditions

LS > LT ,WS < WT that express the fact that the stick
must be longer and thinner than the tube in order to be
useful.

The concept learning problem is relational in nature
because a correct description of the concept involves re-
lationships between objects (eg. the stick must be longer
than the tube) rather than simple attributes. Relational
concept learning has been extensively studied in the field
of Inductive Logic Programming (ILP) [Lavrac and Dze-
roski, 1994]. Our learner uses the ILP algorithm Aleph
[Srinivasan, 2001], a derivative of Progol [Muggleton,
1995], to learn the concept which describes a good tool
for the task. The reader is referred to Muggleton’s paper
for a detailed description of the algorithm.

7 Conclusions and Future Work

In this paper we have presented an architecture for tool
use and learning in robots. It allows an agent to learn
about objects in its environment and to identify the
properties and manipulation necessary in order to em-
ploy them as tools. Our agent learns primarily through
direct interaction with the environment, with demon-
stration by a teacher used to provide a starting point for
learning.

The novel contributions of this research are, firstly,
a general architecture and approach to learning to ex-
ploit objects as tools in a three dimensional world, in
an online incremental manner. Previous work on tool
use in robots has been considerably less general, and has
focused purely on learning tool manipulation. Here we
incorporate tool-use into a problem solving context, and
describe ways of generalising in order to learn the prop-
erties which make a tool useful.

Another contribution of this research is to show how
robot agents can autonomously acquire new behaviours
and incorporate them into their high-level problem-
solving — without requiring the user to explicitly define
the new behaviours to be learnt.

In ongoing work we are evaluating the architecture
described in this paper by carrying out tool use learning
trials in the Gazebo robot simulator. Our aim is show
that the approach presented here is capable of solving a
wide range of tool-using problems, including the ramp
and tray problems described in the introduction.

Acknowledgements

This work has been supported by the Centre for Au-
tonomous Systems and National ICT Australia.

References

[Amir, 2005] E. Amir. Learning partially observable de-
terministic action models. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence
(IJCAI 2005), pages 1433–1439, Edinburgh, Scotland,
UK, August 2005.

[Barber, 2003] Chris Barber. Cognition and tool use:
Forms of engagement in human and animal use of
tools. Taylor & Francis, July 2003.

[Benson, 1996] Scott Benson. Learning action models
for reactive autonomous agents. PhD thesis, Depart-
ment of Computer Science, Stanford University, 1996.

[Bicici and St Amant, 2003] E. Bicici and R. St Amant.
Reasoning about the functionality of tools and physi-
cal artifacts. Technical Report 22, NC State Univer-
sity, 2003.

[de A. Moura and Lee, 2004] A.C. de A. Moura and
P.C. Lee. Capuchin stone tool use in caatinga dry
forest. Science, 306(5703):1909, December 2004.

[Fikes and Nilsson, 1971] R.E. Fikes and N.J. Nilsson.
STRIPS: A new approach to the application of theo-
rem proving to problem solving. Artificial Intelligence,
2(3-4):189–208, 1971.

[Gerkey et al., 2003] Brian P. Gerkey, Richard T.
Vaughan, and Andrew Howard. The Player/Stage
Project: Tools for multi-robot and distributed sensor
systems. In Proceedings of the International Confer-
ence on Advanced Robotics (ICAR 2003), Coimbra,
Portugal, June 2003.

[J. Ku↵ner and S. LaValle, 2000] J. Ku↵ner and S.
LaValle. RRT-Connect: An e�cient approach to
single-query path planning. In Proc. IEEE Int’l Conf.
on Robotics and Automation (ICRA’2000), San Fran-
cisco, CA, April 2000.

[Kenward et al., 2005] B. Kenward, A.A.S. Weir,
C. Rutz, and A. Kacelnik. Tool manufacture by naive
juvenile crows. Nature, 433(121), 2005.

[Koenig and Howard, 2004] N. Koenig and A. Howard.
Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems
(IROS 2004), volume 3, pages 2149–2154, September
2004.

[Krützen et al., 2005] Michael Krützen, Janet Mann,
Michael R. Heithaus, Richard C. Connor, Lars Be-
jder, and William B. Sherwin. Cultural transmission

of tool use in bottlenose dolphins. Proceedings of the
National Academy of Sciences, 102(25):8939–8943, 21
June 2005.

[Lavrac and Dzeroski, 1994] N. Lavrac and S. Dzeroski.
Inductive logic programming: Techniques and applica-
tions. Ellis Horwood, 1994.

[Muggleton, 1995] S. Muggleton. Inverse entailment and
Progol. New Generation Computing, Special issue on
Inductive Logic Programming, 13(3-4):245–286, 1995.

[Nilsson, 1984] Nils J. Nilsson. Shakey the Robot. Tech-
nical note 323, SRI International, Menlo Park, CA,
April 1984.

[Pasula et al., 2007] Hanna M. Pasula, Luke S. Zettle-
moyer, and Leslie Pack Kaelbling. Learning symbolic
models of stochastic domains. Journal of Artificial
Intelligence Research, 29:309–352, 2007.

[Penberthy and Weld, 1992] J. Scott Penberthy and
Daniel Weld. UCPOP: A sound, complete, partial-
order planner for ADL. In Bernhard Nebel, Charles
Rich, and William Swartout, editors, Proceedings of
the third international conference on knowledge rep-
resentation and reasoning (KR-92), pages 103–114,
Cambridge, MA, October 1992. Morgan Kaufmann.

[Srinivasan, 2001] A. Srinivasan. The Aleph Manual.
http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/aleph.html, 2001.

[Stoytchev, 2005] A. Stoytchev. Behaviour-grounded
representation of tool a↵ordances. In Proceedings of
IEEE International Conference on Robotics and Au-
tomation (ICRA), April 2005.

[Wood et al., 2005] A.B. Wood, T.E. Horton, and
R. St Amant. E↵ective tool use in a habile agent. In
Systems and Information Engineering Design Sympo-
sium, pages 75–81. IEEE, April 2005.

