Exercise sheet 2a COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Exercise 1. A dominating set of a graph G = (V, E) is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.

DEGREE-5 DOMINATING SET Input: A graph G = (V, E) with maximum degree at most 5 and an integer k Parameter: k Question: Does G have a dominating set of size at most k?

Design a linear kernel for DEGREE-5 DOMINATING SET.

Exercise 2. Consider the following problem.

Point Line Cover		Ì
Input:	A set of points P in \mathbb{Z}^2 , and an integer k	
Parameter:	k	
Question:	Is there a set L of at most k lines in \mathbb{R}^2 such that each point in P lies on at least one line in L?	

Example: $(P = \{(-1, -2), (0, 0), (1, -1), (1, 1), (1, 2), (1, 3), (1, 4), (2, 4)\}, k = 2)$ is a Yes-instance since the lines x = 1 and y = 2x cover all the points.

Show that POINT LINE COVER has a polynomial kernel.

- 1. Show that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices).
- 2. Design a kernel for CLUSTER EDITING with $O(k^2)$ vertices.