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The Maximin principle

The Maximin principle

Definition (The Maximin principle)

Assume that only the minimally preferred outcomes will occur and choose
those actions that lead to the most preferred among these.

Maximin and miniMax Regret are instances of the Maximin principle:
original values vs regrets

The Maximin principle is the main decision principle used under
complete uncertainty

We’ve seen Maximin and miniMax Regret on decision tables, but
what about more complex decision problems (e.g., multiple decision
points)?
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The Maximin principle

Multi-stage decisions

Example (Product development)

You head the R&D department of a small manufacturing company which
is considering developing a new product. The company must decide
whether to proceed with prototype development and, if development is
successful, subsequently determine the production scale (i.e., the size of
the factory) based on projected demand for the product.

Questions

What does Maximin or miniMax Regret mean in this problem?

Is there a decision-table representation?
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The Maximin principle

Node evaluation
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What does Maximin mean in a tree?

Maximin eliminates branches in chance
nodes (i.e., prunes the tree)

Reduces problem to that of certainty
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The Maximin principle

Node evaluation

Each decision problem is assigned a ‘value’ by a decision rule

The Maximin algorithm for decision trees:

1 Begin at the leaves of the tree
2 At each parent:

1 if a chance node, Maximin prunes all children except the minimally
preferred

2 if a decision node, the elimination principle, eliminates all children
except the maximally preferred

3 propagate the remaining value up to the parent node

3 Repeat the previous step until the root is reached

The value propagated to the root is the value of the problem (under
Maximin); i.e., the value which an agent using Maximin assigns to the
problem
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Normalisation

Problem representation: decision tables

u

v

C (−$10)o

B ($30)o
D

A ($0)F

Observation: Each combination
of an action and a state
uniquely determine an outcome

Model as a binary function:
ω : A× S → Ω

Represented as a table:

o o

F A A

D B C

o

A

B

o o

A

S
ω

Decision tables:

row = action
column = state

Interpretation: B = ω(D, o)
means “B is the outcome of
action D in state o”;
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Normalisation

Trees and tables
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Multiple trees may correspond to the same table

Going from tables (normal form) to trees (extensive form) is straight
forward, but the converse can be tricky

Which representation is better: trees or tables?

Which representation facilitates decision analysis most?
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Normalisation

Multi-stage decisions

Example (Product development)

You head the R&D department of a small manufacturing company which
is considering developing a new product. The company must decide
whether to proceed with prototype development and, if development is
successful, subsequently determine the production scale (i.e., the size of
the factory) based on projected demand for the product.

Questions

What does Maximin or miniMax Regret mean in this problem?

Is there a decision-table representation?
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Normalisation

Actions to strategies

In a decision tree:

Recall that a decision table is a representation of the outcome
mapping ω : A× S → Ω

Observation: following a path from the root to a leaf leads to a
unique outcome

Generalising:

A ‘state’ must specify conditions in chance nodes
An ‘action’ must specify actions at decision nodes

Definition (Strategy)

A strategy (or policy or plan) is a procedure that specifies the selection of
an action at every reachable decision point.
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Normalisation

Normalisation

States:
s1 s2 s3

s, h s, l f

A strategy must specify an
action at each reachable
decision point; e.g.,
“Authorise development
(Au), if development
succeeds (s), then build
large factory (L)”
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Normalisation

Normalisation

Encoding:

α/A says:

At the decision node reached via path α choose action A.

Example: Au;s/S:

If development has been authorised (Au) and has succeeded
(s), choose to build a small factory (S).

Strategies for this problem:

A1 Au;s/L

A2 Au;s/S

A3 Ab
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Normalisation

Normalisation

Code Description

fc full capacity

pc partial capacity

lp large profits

mp moderate profits

be break even

ldc lose dev. costs

sat demand satisfied

dis dissatisfaction

sq status quo

s, h s, l f

Au;s/L fc,lp,sat pc,be,sat ldc

Au;s/S fc,mp,dis fc,mp,sat ldc

Ab sq sq sq
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Normalisation

Normalisation

Outcome values:

ω v

fc,lp,sat 10

pc,be,sat 4

ldc −1

fc,mp,dis 5

fc,mp,sat 8

sq 0

Decision table:

s, h s, l f

Au;s/L 10 4 −1

Au;s/S 5 8 −1

Ab 0 0 0

s, h

10

5

0

s, h s, l f

Exercises

Find the Maximin and miniMax Regret strategies for this problem.

Evaluate this problem under MaxiMax, Maximin, miniMax Regret
using both normal and extensive forms.
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Normalisation

Representing information

Consider the fund-raiser example.

Decision before weather known:

85S

75F
w

120S

150F

d

Decision nodes part of the same
information set

Available strategies: F, S only

Decision after weather known:

85S

75F
w

120S

150F

d

Decision nodes distinguishable

Possible strategy: e.g., d/F
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Indifference; equal preference

Indifference: equal preference

Which action below is preferred above under Maximin?

s1 s2

A 1 0

B 0 1

s1

1

0

s1 s2

Definition (Indifference)

If two actions A and B are equally preferred then the agent is said to be
indifferent between A and B.

Indifference means an agent prefers two alternatives equally, not that
it doesn’t know which it prefers
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Indifference; equal preference

Indifference classes

Definition (Indifference class)

An indifference class is a non-empty set of all actions/outcomes between
which an agent is indifferent.

For a given action A ∈ A, the indifference class of A is given by

I(A) = {a ∈ A | V (a) = V (A)}

Indifference classes partition set of all actions

Different agents have different preferences over outcomes/actions,
hence different indifference classes

Different decision rules evaluate actions differently; i.e., produce
different indifference classes
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Graphing decision problems
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Graphing decision problems

Graphical representation

s1 s2

A 2 3

B 4 0

C 3 3

D 5 2

E 3 5

s1

2

4

3

5

3

s1 s2s1

2

4

3

5

3

s1 s2

Let vi(a) = v(a, si) be the
value of action a in state si.
Each action a corresponds to
a point (v1, v2), where
vi = v(a, si).

s2

0

1

2

3

4

5

s10 1 2 3 4 5

A

(2, 3)

C

(3, 3)
D

(5, 2)

E

(3, 5)

B (4, 0)
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Graphing decision problems

Indifference curves: Maximin

For the pure actions below:

s1 s2

A 2 3

B 4 0

C 3 3

D 5 2

E 3 5

s1

2

4

3

5

3

s1 s2

Consider curves of all points
representing strategies with
same Maximin value; i.e.,
Maximin indifference curves.

s2

0

1

2

3

4

5

s10 1 2 3 4 5

A

I(A)

DC

E

2

3
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Graphing decision problems

Graphing regret

Consider three actions:

s1 s2

A 2 4

B 4 1

C 5 3

s1

2

4

5

s1 s2 s1 s2

A 3 0

B 1 3

C 0 1

s1

3

1

0

s1 s2

Regrets and indifference curves
for miniMax Regret in blue

s2

0

1

2

3

4

s10 1 2 3 4 5

A

B

C

A′

B′

C′

Exercises

In regard to preference over actions, what is the relation between Maximin
and miniMax Regret?
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Dominance

River example

X
A B C

Example (River logistics)

Alice’s warehouse is located at X on a river that flows down-stream from C
to A. She delivers goods to a client at C via motor boats. On some days a
(free) goods ferry travels up the river, stopping at A then B and C, but
not at X.

The fuel required (litres) to reach C from each starting point:

A X B C

To C from: 4 3 2 0
Alice wants to minimise fuel consumption (in litres).
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Dominance

River example

X
A B C

f f

A 4 0

B 3 1

C 1 1

f

4

3

1

f f

Alice considers three possible ways to get to C (from starting point X):

A : via A, by floating down the river

B : via B, by travelling up-stream to B

C : by travelling all the way to C

Outcomes are measured in litres left in a four-litre tank.

Exercise

Let w : Ω→ R denote fuel consumption in litres. What transformation
f : R→ R is responsible for the values v : Ω→ R in the decision table?
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Dominance

River example

Axes correspond to payoffs in each of the two states; i.e., payoff v1 in
state s1 = f and v2 in s2 = f

Actions graphed below:

f f

A 4 0

B 3 1

C 1 1

f

4

3

1

f f
f

0

1

2

f0 1 2 3 4

A

B

C

Option C not a better response than B under any circumstances (i.e.,
in any state)

C worse than B in some cases and no better in all others; C can be
discarded
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Dominance

Generalised dominance

Definition (Strict dominance)

Strategy A strictly dominates B iff every outcome of A is more preferred
than the corresponding outcome of B.

Definition (Weak dominance)

Strategy A weakly dominates B iff every outcome of A is no less preferred
than the corresponding outcome of B, and some outcome is more
preferred.

s1 s2 s3

A 3 4 2

B 4 4 3

C 5 6 3

s1

3

4

5

s1 s2 s3
Exercise

Which strategies in the decision table
shown are dominated?
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Dominance

Dominance and best response

Corollary

Strategy A strictly dominates B iff A is a better response than B in each
possible state.

Corollary

Strategy A weakly dominates B iff A is a better response than B in some
possible state and B is not a better response than A in any state.

Dominance principle

A rational agent should never choose a dominated strategy.
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Dominance

Admissible actions

s1 s2

A 0 4

B 3 1

C 2 3

D 1 2

s1

0

3

2

1

s1 s2

s2

0

1

2

3

4

s10 1 2 3 4

A

B

C

D

Definition (Admissible)

An action is admissible iff it is not dominated by any other action. An
action which is not admissible is said to be inadmissible. The set of all
admissible actions is called the admissible frontier.

Exercises

Which actions above are admissible?
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Dominance

Dominance: MaxiMax and Maximin

s1 s2 M m

A 2 2 2 2

B 2 1 2 1

C 1 1 1 1

Definition (Dominance elimination)

A decision rule is said to satisfy (strict/weak) dominance elimination if it
never chooses actions that are (strictly/weakly) dominated.

Dominated actions can be discarded under any rule that satisfies
dominance elimination
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Dominance

Dominance summary

Rules that satisfy strict/weak dominance elimination.

Rule Strict Weak

MaxiMax
√

×
Maximin

√
×

Hurwicz’s
√

×
miniMax Regret

√
×

Laplace’s
√ √

Exercise

Verify the properties above.
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Dominance

Rule axioms

The following criteria can be used to assess the suitability of decision rules:

Axiom of dominance

A decision rule should never choose a dominated action.

Axiom of representational invariance

A decision rule’s choices should be independent of representation.

Axiom of solubility

A decision rule should always select at least one action.

Axiom of state duplication independence

Adding a duplicate state should not affect a rule’s decision.
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Dominance

Summary: decisions under complete uncertainty

Maximin in extensive form

Multi-stage decisions

Extensive to normal form translation

Graphical visualisation

Indifference classes

Dominance and admissibility
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