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Goal

Deductive reasoning in language as close as 
possible to full FOL

! ! ¬,  ∧,  ∨,  ∃, ∀

Knowledge Level:
! ! given KB, α,   determine if KB |= α.
or!! given an open α(x1,x2,...xn),  find t1,t2,...tn  

! such that KB |= α(t1,t2,...tn)

When KB is finite {α1, α2, ..., αk}
! ! KB |= α   
iff  ! |= [(α1 ∧ α2 ∧ ... ∧ αk)  ⊃  α]

iff  ! KB ∪ {¬α}  is unsatisfiable
iff  ! KB ∪ {¬α}  |=  FALSE

So want a procedure to test for validity, or 
satisfiability, or for entailing FALSE. 

Will now consider such a procedure
! first: without quantifiers
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Clausal Representation

Formula  =  set of clauses
Clause  =  set of literals
Literal  =  atomic sentence or its negation

! ! positive literal  and negative literal

Notation:
! If l is a literal, then ¬ l is its complement

! p  ⇒  ¬p! ¬p  ⇒  p
! To distinguish clauses from formulas:

– [ and ] for clauses:   [p, ¬ r, s]
– { and } for formulas:  {[p, ¬ r, s], [p, r, s], [¬ p]}

! []  is the empty clause! {} is the empty formula
! So {} is different from  {[]}!

Interpretation:
! Formula  understood as conjunction of clauses
! Clause understood as disjunction of literals 
! Literals understood normally

So:!
! {[p,¬q], [r], [s]}   is representation of   ((p ∨ ¬q)  ∧  r  ∧ s)

! []   is a representation of FALSE
! {}  is a representation of TRUE
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CNF and DNF

Every propositional wff α can be converted into a 
formula α′ in Conjunctive Normal Form  (CNF) in 
such a way that  |= α ≡ α′.

1.!eliminate ⊃ and ≡
+ using  (α ⊃ β) ß  (¬α ∨ β)  etc.

2.!push ¬  inward
! using  ¬(α ∧ β) ß  (¬α ∨ ¬β)  etc.

3.!distribute ∨ over ∧
+ using  ((α ∧ β) ∨ γ) ß  ((α ∨ γ) ∧ (β ∨ γ))

4.!collect terms
! using  (α ∨ α) ß α  etc.

Result is a conjunction of disjunction of literals.
! an analogous procedure produces DNF, 

a disjunction of conjunction of literals

 We can identify CNF wffs with clausal formulas
! (p ∨ ¬q ∨ r) ∧ (s ∨ ¬r)  ß  {[p, ¬q, r], [s, ¬r]}

So:  given a finite KB and α,  to find out if 
KB |= α,  it will be sufficient to

1.!put  (KB ∧ ¬α) into CNF, as above 

2.!determine the satisfiability of clauses
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Resolution rule of inference

Given two clauses, infer a new clause:
! From clause  ! {p} ∪  C1,!          

! and! ! {¬ p} ∪  C2,!           

! infer clause! C1  ∪  C2.! 

C1 ∪ C2  is called a resolvent of input clauses 
with respect to p.
Example:  

! From clauses [w, p, q]  and  [w, s, ¬ p], 
have  [w, q, s]  as resolvent wrt p.

Special Case:
! [p]  and  [¬ p]  resolve to []

! C1 and C2  are empty

A derivation of a clause c  from a set S of clauses 
is a sequence  c1, c2, ..., cn  of clauses, where the 
last clause cn = c, and for each ci,  either 

1.!ci  ∈  S,! or!   

2.!ci  is a resolvent of two earlier clauses 
in the derivation

Write:  S |⎯ c  if there is a derivation
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Rationale

Resolution is a symbol-level rule of inference, 
but has a connection to knowledge-level logical 
interpretations
Resolvent is entailed by input clauses.
! Suppose I |=  (p ∨ α)  and   I |=  (¬p ∨ β)

+ Case 1:    I |=  p
! ! then   I |= β,   so   I |= (α ∨ β).

+ Case 2:    I |≠  p
! ! then   I |= α,   so   I |= (α ∨ β).

! Either way,     I |= (α ∨ β).

! So:    {(p ∨ α),  (¬p ∨ β)}  |=  (α ∨ β).

Special case:
! [p]  and  [¬ p]  resolve to [],
! so   {[p], [¬ p]}  |=  FALSE
! that is:   {[p], [¬ p]}  is unsatisfiable
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Derivations and entailment

Can extend the previous argument to 
derivations:

! If  S |⎯  c   then   S |= c
! Proof:   by induction on the length of the derivation.   

Show (by looking at the two cases) that S |= ci.

But the converse does not hold in general
! Can have S |= c  without having  S |⎯  c.

! Example:   {[¬ p]}  |=  [¬ p, ¬ q]
! ! i.e.  ¬p  |=  (¬p ∨ ¬q) 

! but no derivation

However, ...

Resolution is sound and complete for [] !
! Theorem:  S |⎯ []   iff    S |= []

! Result will carry over to quantified clauses (later)

So for any set S of clauses: 
! S is unsatisfiable  iff  S |⎯  [].

! Provides method for determining satisfiability:
! Search all derivations to see if [] is produced

! Also provides method for determining all entailments
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A procedure for entailment

To determine if KB |= α,  
• put KB, ¬α into CNF to get S,  as before
• check if S |⎯  [].

! If KB = {}, then we are testing the validity of α.

Non-deterministic procedure
1.! Check if [] is in S.

! ! If yes, then return UNSATISFIABLE

2.! Check if there are two clauses c1 
and c2
! in S such that they resolve to 
produce 
! a c3 not already in S.

! ! If no, then return SATISFIABLE

3.! Add c3 to S and go to 1.

Note: need only convert KB to CNF once
• can handle multiple queries with same KB

• after addition of new fact α, can simply add new 
clauses α′ to KB
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Example 1

KB:
! FirstGrade

! FirstGrade  ⊃  Child

! Child ∧ Male ⊃ Boy

! Kindergarten  ⊃  Child

! Child ∧ Female ⊃  Girl
! Female

Show  that   KB |= Girl

[FirstGrade]

[¬ FirstGrade, Child]

[¬ Child, ¬ Female, Girl]

[¬ Child, ¬ Male, Boy]

[¬ Kindergarten, Child]

[Female]

[¬ Girl]

[Child]

[Girl, ¬ Female]

[Girl]

[]

negation of 
query

Derivation has
9 clauses, 4 new
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Example 2

KB:
! (Rain ∨ Sun)
! (Sun ⊃ Mail)
! ((Rain ∨ Sleet)  ⊃  Mail) 

[Rain , Sun]  [¬Sun, Mail]  [¬Rain, Mail]  [¬Mail]

Show  KB |= Mail

[¬Sleet, Mail]

[¬Rain]

[¬Sun]

[Rain]

[]

Similarly   KB |≠ Rain

! Can enumerate all clauses given ¬ Rain 
and [] will not be generated           

Note: every clause 
not in S has 2 parents
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Quantifiers

Clausal form as before, but atom is
! P(t1, t2, ..., tn),  where  ti  may contain variables

Interpretation as before,  but variables are 
understood universally 

Example:  {[P(x), ¬ R(a,f(b,x))],  [Q(x,y)]}  
! ! interpreted as
+ ∀x∀y{[R(a,f(b,x)) ⊃ P(x)]  ∧  Q(x,y)}

Substitutions:   θ = {v1/t1,  v2/t2, ..., vn/tn}

Notation:  If l is a literal and θ is a substitution, 
! then  lθ  is the result of the substitution 
! ! (and similarly, cθ where c is a 
clause)

Example:   θ = {x/a, y/g(x,b,z)}
+ + P(x,z,f(x,y)) θ   =   P(a,z,f(a,g(x,b,z)))

A literal is ground if it contains no variables.     
A literal l is an instance  of l′, 

if  for some θ,  l = l′θ. 
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Generalizing CNF

Resolution will generalize to handling variables 
But how to convert wffs to CNF?
Need three additional steps:

1.!eliminate ⊃ and ≡

2.!push ¬  inward
! using  also ¬∀x.α ß  ∃x.¬α  etc.

3.!standardize variables: each quantifier gets 
its own variable
! e.g.  ∃x[P(x)]  ∧ Q(x)  ß  ∃z[P(z)]  ∧ 

Q(x)! ! !         where z is a new 
variable

4. eliminate all existentials
! (discussed later)

5.!move universals to the front
! using  ∀x[α] ∧ β ß  ∀x[α∧ 
β]+ + + where β does not use x

6.!distribute ∨ over ∧

7.!collect terms

Get universally quantified conjunction of 
disjunction of literals

! then drop the quantifiers...

Ignore = for now
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First-order resolution

Main idea:  

! a literal (with variables) stands for all its instances;  
will allow all such inferences  

So given:  
! [P(x,a), ¬Q(x)] and [¬P(b,y), ¬R(b,f(y))],
! want to infer:  [¬Q(b), ¬R(b,f(a))] 

! since ! [P(x,a), ¬Q(x)]  has  [P(b,a), ¬Q(b)] and 
! ! [¬P(b,y),¬R(b,f(y ))] has  [¬P(b,a), 
¬R(b,f(a))]

Resolution:
! Given  clauses:  {l1} ∪ C1  and   {¬ l2} ∪ C2 

! Rename variables, so that distinct in two clauses.
! For any θ such that l1θ = l2θ, can infer (C1 ∪ C2)θ.

+ We say that  l1  unifies with l2 and 
that θ is a unifier  of the two literals

Resolution derivation:  as before

Theorem:  S |⎯  []   iff    S |= []  
! ! !  iff   S is unsatisfiable

still ignoring =

example below
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Example 3

KB:
! ∀x GradStudent(x)  ⊃  Student(x)

! ∀x Student(x)  ⊃  HardWorker(x)
! GradStudent(sue)

Q:! HardWorker(sue)

[¬HardWorker(sue)]

[¬Student(sue)]

[¬GradStudent(sue)]

[]

x/sue

x/sue

[¬Student(x), HardWorker(x)]

[¬GradStudent(x), Student(x)]

[GradStudent(sue)]

Can label each step
with the unifier
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The 3 block example

KB = {On(a,b),  On(b,c),  Green(a),  ¬Green(c)}
already in CNF

Q  =  ∃x∃y[On(x,y)  ∧  Green(x)  ∧  ¬Green(y)]
! ! Note:  ¬Q  has no existentials to eliminate

yields    {[¬ On(x,y), ¬ Green(x), Green(y)]}   in CNF

[On(b,c)]

[On(a,b)]

[¬On(x,y),  ¬Green(x), Green(y)]

[Green(a)]

[¬Green(c)] [¬Green(a), Green(b)]

[¬Green(b), Green(c)]

[¬Green(b)] 
[Green(b)]

[]Note:  Need to use 
On(x,y) twice, for 2 cases

{x/b, y/c}

{x/a, y/b}
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Arithmetic

KB:
! ! Plus(zero,x,x)
! Plus(x,y,z)  ⊃  Plus(succ(x),y,succ(z))

Q:! ∃u Plus(2,3,u)
! where for readability, we use   
! ! 0  for zero,  
! ! 3  for  succ(succ(succ(zero)))  etc.

[¬Plus(2,3,u)]

[¬Plus(1,3,v)]

[¬Plus(0,3,w)]

[]

x/3, w/3

x/0, y/3, v/succ(w), z/w

x/1, y/3, u/succ(v), z/v

Can find the answer
in the derivation
   u/succ(succ(3))
i.e  u/5

Can derive Plus(2,3,5)

Rename variables 
to keep them distinct

[¬Plus(x,y,z), Plus(succ(x),y,succ(z))]

[Plus(0,x,x)]
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Answer predicates

In full FOL, have possibility of deriving  ∃xP(x) 
without being able to derive P(t) for any t.

! e.g. the three-blocks problem
! ∃x∃y[On(x,y)  ∧  Green(x)  ∧  ¬Green(y)]
! but cannot derive which block is which 

Solution:  answer-extraction process
• replace query  ∃xP(x) by ∃x[P(x) ∧ ¬A(x)]

! where A is a new predicate symbol called the answer predicate

• instead of deriving  [], derive any clause containing just the 
answer predicate

• can always convert a derivation of [] 

Example KB:  
+ {Student(john), Student(jane), Happy(john)}

Q:! ∃x[Student(x) ∧ Happy(x)]

Student(john)

[¬Student(x), ¬Happy(x), A(x)]Happy(john)

[¬Student(john), A(john)]

[A(john)]

{x/john}Student(jane)

⇓

An answer is: John
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Disjunctive answers

Example KB:  
+ + {Student(john), Student(jane), 

! ! [Happy(john) ∨ Happy(jane)]}

Q:! ∃x[Student(x) ∧ Happy(x)]

[¬Happy(john), A(john)]

[A(jane), A(john)]

{x/john}

⇓
[¬Student(x), ¬Happy(x), A(x)]

Student(jane)

[¬Happy(jane), A(jane)]

{x/jane}

[Happy(john), Happy(jane)]

[Happy(john), A(jane)]

Student(john)

An answer is:  either Jane or JohnNote:
• can have variables in answer

• need to watch for Skolem symbols... (next)
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Skolemization

So far, converting wff to CNF ignored existentials
! ! e.g.  ∃x∀y∃zP(x,y,z)

Idea:  names for individuals claimed to exist, 
called Skolem constant and function symbols 

there exists an x, call it a 
for each y,  there is a z,  call it f(y)
! ! get  ∀yP(a,y,f(y))

In general:
+ ∀x1(...∀x2(...∀xn(...∃y[...  y  ...] ...)...)...)

is replaced by
+ ∀x1(...∀x2(...∀xn( ...   [... f(x1,x2,...,xn) ...] ...)...)...)

! where f is a new function symbol that 
appears nowhere else

Skolemization does not preserve equivalence
! e.g.  |≠  ∃xP(x) ≡ P(a)

But it does preserve satisfiability
! α is satisfiable  iff  α′ is satisfiable

where α′ is the result of skolemization

Sufficient for resolution!
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Variable dependence

Show that  ∃x∀yR(x,y) |= ∀y∃xR(x,y)
! show {∃x∀yR(x,y),  ¬∀y∃xR(x,y)}  unsatisfiable

! ∃x∀yR(x,y)  ß  ∀yR(a,y)
! ¬∀y∃xR(x,y)  ß  ∃y∀x¬R(x,y)  ß  ∀x¬R(x,b)

!  then {[R(a,y)],  [¬ R(x,b)]}  |⎯ []  with  {x/a, y/b}.

Show that  ∀y∃xR(x,y) |≠  ∃x∀yR(x,y) 
! show {∀y∃xR(x,y),  ¬∃x∀yR(x,y)}  satisfiable

+ ∀y∃xR(x,y)  ß  ∀yR(f(y),y)
! ¬∃x∀yR(x,y)  ß  ∀x∃y¬R(x,y)  ß  ∀x¬R(x,g(x))

! then  get {[R(f(y),y)],  [¬ R(x,g(x)]}
+ where the two literals do not unify 

+

Note: 
! important to get dependence of variables correct 

+ R(f(y),y)  vs.  R(a,y)  in the above
first argument depends
on second one here
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A problem

KB:! LessThan(succ(x),y)  ⊃  LessThan(x,y)

Q:! LessThan(zero,zero)

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

Infinite branch of resolvents
! cannot use a simple depth-first procedure 

to search for []

[LessThan(x,y), ¬LessThan(succ(x),y)]

Should fail since KB |≠ Q

...
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Undecidability

Is there a way to detect when this happens?
No!  FOL is very powerful

! can be used as a full programming language
! just as there is no way to detect in general when 

a program is looping

There can be no procedure that does this:
! Proc[Clauses] =

If Clauses are unsatisfiable
then return YES
else return NO

However:  Resolution is complete
! some branch will contain [], for unsat clauses

So breadth-first search guaranteed to find []
! search may not terminate on satisfiable clauses 

[]
...

...
...

infinite
branches

Also true for
Horn clauses
   (later)

KR & R! ©  Brachman & Levesque  2005   Resolution       

Overly specific unifiers

In general, no way to guarantee efficiency, or 
even termination

! later: put control into users' hands

one major way:
! reduce redundancy in search, by keeping search 

as general as possible

Example
! ! ..., P(g(x),f(x),z)]    [¬ P(y,f(w),a), ...
! unified by

! θ1 = {x/b, y/g(b), z/a, w/b}
+ gives  P(g(b),f(b),a)

! and by
! θ2 = {x/f(z), y/g(f(z)), z/a, w/f(z)}

+ gives  P(g(f(z)),f(f(z)),a).

Might not be able to derive [] from clauses 
having overly specific substitutions

! wastes time in search! 
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Most general unifiers
θ is a most general unifier of literals l1 and l2  iff

1.!! θ unifies l1 and l2

2.!! for any other unifier θ′,  there is a another 
! ! substitution θ* such that θ′ = θθ*

! ! Note: composition θθ* requires applying θ* to terms in θ

for previous example, an MGU is
!    θ = {x/w,  y/g(w), z/a}
for which
!    θ1  =  θ{w/b}

+    θ2  =  θ{w/f(z)}

Theorem:  Can limit search to MGUs only without loss of 
completeness  (with certain caveats)

Computing an MGU,  given a set of lits {li}
1.!! Start with θ = {}. 

2.!! If all the liθ are identical, then done; 
! otherwise, get disagreement set, DS
! e.g   P(a,f(a,g(z),...  P(a,f(a,u,...

! disagreement set,  DS = {u, g(z)}

3.!! Find a variable v ∈ DS, and a term t ∈ DS
! not containing v.  If not, fail.

4.!! θ = θ{v/t}
5.!! Go to 2

Note: there is a better linear algorithm
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Herbrand Theorem

Some 1st-order cases can be handled by 
converting them to a propositional form
Given a set of clauses S

• the Herbrand universe of S is the set of all terms formed 
using only the function symbols (and constants, at least one) 
in S
! for example, if S uses (unary) f, and c, d,!
! U = {c, d, f(c), f(d), f(f(c)),  f(f(d)), f(f(f(c))), ...}

• the Herbrand base of S is 
+ { cθ |  c ∈ S   and   θ replaces the variables in c by 
! ! terms from the Herbrand universe}

Theorem:  S is satisfiable  iff  Herbrand base is
! ! (applies to Horn clauses also)

Herbrand base has no variables, and so is 
essentially propositional, though usually infinite 

• finite, when Herbrand universe is finite
can use propositional methods (guaranteed to terminate)

• sometimes other “type” restrictions can be used to 
keep the Herbrand base finite

include f(t)  only if t is the correct type
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Resolution is difficult!  

First-order resolution is not guaranteed to 
terminate.
What can be said about the propositional case?

! Recently shown by Haken that there are unsatisfiable 
clauses {c1, c2, ..., cn} such that the shortest derivation 
of [] contains on the order of 2n  clauses

! Even if we could always find a derivation immediately, 
the most clever search procedure will still require 
exponential time on some problems

Problem just with resolution?
! Probably not.
! Determining if set of clauses is satisfiable shown by Cook to 

be NP-complete
! no easier than an extremely large variety of 

computational tasks
! any search task where what is searched for can be 

verified in polynomial time can be recast as a 
satisfiability problem

» satisfiability
» does graph of cities allow for a full tour of size k miles?
» can N queens be put on an N×N chessboard all safely?
» ...

! Satisfiability is strongly believed by most people to be 
unsolvable in polynomial time
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Implications for KR

Problem: want to produce entailments of KB as 
needed for immediate action

! full theorem-proving may be too difficult for  KR!
! need to consider other options ...

– giving control to user
! procedural representations (later)

– less expressive languages
! e.g.  Horn clauses (and a major theme later)

In some applications, it is reasonable to wait
! e.g. ! mathematical theorem proving, 
! ! ! where we only care about 
specific formula

Best to hope for in general:  reduce redundancy
! refinements to resolution to improve search

Main example:  MGU, as before
! but many other possibilities

! need to be careful to preserve completeness

! ATP:  automated theorem proving
! area that studies strategies for proving difficult theorems 
! main application: mathematics,

but relevance also to KR



KR & R! ©  Brachman & Levesque  2005   Resolution       

Strategies

1.! Clause elimination
• pure clause

! contains literal l such that ¬ l does not appear in any 
other clause

! clause cannot lead to []
• tautology

! clause with a literal and its negation
! any path to [] can bypass tautology

• subsumed clause
! a clause such that one with a subset of its literals is 

already present
! path to [] need only pass through short clause
! can be generalized to allow substitutions

2.! Ordering strategies
! many possible ways to order search, but best and 

simplest is
• unit preference

! prefer to resolve unit clauses first
! Why?   Given unit clause and another clause, 

resolvent is a smaller one  ß  [] 

KR & R! ©  Brachman & Levesque  2005   Resolution       

Strategies 2

3.! Set of support
! KB is usually satisfiable, so not very useful to resolve 

among clauses with only ancestors in KB
! contradiction arises from interaction with ¬Q

! always resolve with at least one clause that has 
an ancestor in ¬Q
! preserves completeness (sometimes)

4.! Connection graph
! pre-compute all possible unifications

! build a graph with edges between any two unifiable 
literals of opposite polarity
! label edge with MGU

!
! Resolution procedure:

! repeatedly:
– select link
– compute resolvent
– inherit links from parents after substitution

! Resolution as search:
! find  sequence of links  L1, L2, ... producing [] 
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5.! Special treatment for equality
! instead of using axioms for = 

! relexitivity, symmetry, transitivity,
substitution of equals for equals

! use new inference rule:   paramodulation

! from {(t=s)} ∪ C1   and {P(... t′...)} ∪ C2 

! where  tθ = t′θ

! infer {P(... s ...)}θ  ∪  C1θ  ∪  C2θ.!
! collapses many resolution steps into one
! see also: theory resolution (later)

6.! Sorted logic
! terms get sorts:
! ! x: Male   mother:[Person → Female]
! keep taxonomy of sorts

! refuse to unify P(s) with P(t) unless sorts 
are compatible
! assumes only “meaningful” paths will lead to []

Strategies 3

[father(john)=bill] [Married(father(x),mother(x))]

[Married(bill,mother(john))]
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Finally...

7.! Directional connectives
! ! given [~p, q], can interpret as either

! ! from p,  infer q! ! (forward)
! ! to prove q,  prove p! (backward)

! ! ! procedural reading of ⊃

! ! In 1st case:
! ! would  only resolve [¬ p, q] with [p, ...]

+ producing [q, ...]

+ + In 2nd case:
! ! would only resolve [¬ p, q] with [¬ q, ...]

+ producing [¬ p, ...]

Intended application:
! ! forward:   Battleship(x)  ⊃  Gray(x)

! ! do not want to try to prove something is 
gray by ! proving it is a battleship

! ! backward:  Human(x)  ⊃  Has(x,spleen)

! ! do not want to conclude from someone 
being ! human, that she has each property

the basis for the procedural representations

!


