
KR & R! © Brachman & Levesque 2005 Resolution

Goal

Deductive reasoning in language as close as
possible to full FOL

! ! ¬, ∧, ∨, ∃, ∀

Knowledge Level:
! ! given KB, α, determine if KB |= α.
or!! given an open α(x1,x2,...xn), find t1,t2,...tn

! such that KB |= α(t1,t2,...tn)

When KB is finite {α1, α2, ..., αk}
! ! KB |= α
iff ! |= [(α1 ∧ α2 ∧ ... ∧ αk) ⊃ α]

iff ! KB ∪ {¬α} is unsatisfiable
iff ! KB ∪ {¬α} |= FALSE

So want a procedure to test for validity, or
satisfiability, or for entailing FALSE.

Will now consider such a procedure
! first: without quantifiers

KR & R! © Brachman & Levesque 2005 Resolution

Clausal Representation

Formula = set of clauses
Clause = set of literals
Literal = atomic sentence or its negation

! ! positive literal and negative literal

Notation:
! If l is a literal, then ¬ l is its complement

! p ⇒ ¬p! ¬p ⇒ p
! To distinguish clauses from formulas:

– [and] for clauses: [p, ¬ r, s]
– { and } for formulas: {[p, ¬ r, s], [p, r, s], [¬ p]}

! [] is the empty clause! {} is the empty formula
! So {} is different from {[]}!

Interpretation:
! Formula understood as conjunction of clauses
! Clause understood as disjunction of literals
! Literals understood normally

So:!
! {[p,¬q], [r], [s]} is representation of ((p ∨ ¬q) ∧ r ∧ s)

! [] is a representation of FALSE
! {} is a representation of TRUE

KR & R! © Brachman & Levesque 2005 Resolution

CNF and DNF

Every propositional wff α can be converted into a
formula α′ in Conjunctive Normal Form (CNF) in
such a way that |= α ≡ α′.

1.!eliminate ⊃ and ≡
+ using (α ⊃ β) ß (¬α ∨ β) etc.

2.!push ¬ inward
! using ¬(α ∧ β) ß (¬α ∨ ¬β) etc.

3.!distribute ∨ over ∧
+ using ((α ∧ β) ∨ γ) ß ((α ∨ γ) ∧ (β ∨ γ))

4.!collect terms
! using (α ∨ α) ß α etc.

Result is a conjunction of disjunction of literals.
! an analogous procedure produces DNF,

a disjunction of conjunction of literals

 We can identify CNF wffs with clausal formulas
! (p ∨ ¬q ∨ r) ∧ (s ∨ ¬r) ß {[p, ¬q, r], [s, ¬r]}

So: given a finite KB and α, to find out if
KB |= α, it will be sufficient to

1.!put (KB ∧ ¬α) into CNF, as above

2.!determine the satisfiability of clauses

KR & R! © Brachman & Levesque 2005 Resolution

Resolution rule of inference

Given two clauses, infer a new clause:
! From clause ! {p} ∪ C1,!

! and! ! {¬ p} ∪ C2,!

! infer clause! C1 ∪ C2.!

C1 ∪ C2 is called a resolvent of input clauses
with respect to p.
Example:

! From clauses [w, p, q] and [w, s, ¬ p],
have [w, q, s] as resolvent wrt p.

Special Case:
! [p] and [¬ p] resolve to []

! C1 and C2 are empty

A derivation of a clause c from a set S of clauses
is a sequence c1, c2, ..., cn of clauses, where the
last clause cn = c, and for each ci, either

1.!ci ∈ S,! or!

2.!ci is a resolvent of two earlier clauses
in the derivation

Write: S |⎯ c if there is a derivation

KR & R! © Brachman & Levesque 2005 Resolution

Rationale

Resolution is a symbol-level rule of inference,
but has a connection to knowledge-level logical
interpretations
Resolvent is entailed by input clauses.
! Suppose I |= (p ∨ α) and I |= (¬p ∨ β)

+ Case 1: I |= p
! ! then I |= β, so I |= (α ∨ β).

+ Case 2: I |≠ p
! ! then I |= α, so I |= (α ∨ β).

! Either way, I |= (α ∨ β).

! So: {(p ∨ α), (¬p ∨ β)} |= (α ∨ β).

Special case:
! [p] and [¬ p] resolve to [],
! so {[p], [¬ p]} |= FALSE
! that is: {[p], [¬ p]} is unsatisfiable

KR & R! © Brachman & Levesque 2005 Resolution

Derivations and entailment

Can extend the previous argument to
derivations:

! If S |⎯ c then S |= c
! Proof: by induction on the length of the derivation.

Show (by looking at the two cases) that S |= ci.

But the converse does not hold in general
! Can have S |= c without having S |⎯ c.

! Example: {[¬ p]} |= [¬ p, ¬ q]
! ! i.e. ¬p |= (¬p ∨ ¬q)

! but no derivation

However, ...

Resolution is sound and complete for [] !
! Theorem: S |⎯ [] iff S |= []

! Result will carry over to quantified clauses (later)

So for any set S of clauses:
! S is unsatisfiable iff S |⎯ [].

! Provides method for determining satisfiability:
! Search all derivations to see if [] is produced

! Also provides method for determining all entailments

KR & R! © Brachman & Levesque 2005 Resolution

A procedure for entailment

To determine if KB |= α,
• put KB, ¬α into CNF to get S, as before
• check if S |⎯ [].

! If KB = {}, then we are testing the validity of α.

Non-deterministic procedure
1.! Check if [] is in S.

! ! If yes, then return UNSATISFIABLE

2.! Check if there are two clauses c1
and c2
! in S such that they resolve to
produce
! a c3 not already in S.

! ! If no, then return SATISFIABLE

3.! Add c3 to S and go to 1.

Note: need only convert KB to CNF once
• can handle multiple queries with same KB

• after addition of new fact α, can simply add new
clauses α′ to KB

KR & R! © Brachman & Levesque 2005 Resolution

Example 1

KB:
! FirstGrade

! FirstGrade ⊃ Child

! Child ∧ Male ⊃ Boy

! Kindergarten ⊃ Child

! Child ∧ Female ⊃ Girl
! Female

Show that KB |= Girl

[FirstGrade]

[¬ FirstGrade, Child]

[¬ Child, ¬ Female, Girl]

[¬ Child, ¬ Male, Boy]

[¬ Kindergarten, Child]

[Female]

[¬ Girl]

[Child]

[Girl, ¬ Female]

[Girl]

[]

negation of
query

Derivation has
9 clauses, 4 new

KR & R! © Brachman & Levesque 2005 Resolution

Example 2

KB:
! (Rain ∨ Sun)
! (Sun ⊃ Mail)
! ((Rain ∨ Sleet) ⊃ Mail)

[Rain , Sun] [¬Sun, Mail] [¬Rain, Mail] [¬Mail]

Show KB |= Mail

[¬Sleet, Mail]

[¬Rain]

[¬Sun]

[Rain]

[]

Similarly KB |≠ Rain

! Can enumerate all clauses given ¬ Rain
and [] will not be generated

Note: every clause
not in S has 2 parents

KR & R! © Brachman & Levesque 2005 Resolution

Quantifiers

Clausal form as before, but atom is
! P(t1, t2, ..., tn), where ti may contain variables

Interpretation as before, but variables are
understood universally

Example: {[P(x), ¬ R(a,f(b,x))], [Q(x,y)]}
! ! interpreted as
+ ∀x∀y{[R(a,f(b,x)) ⊃ P(x)] ∧ Q(x,y)}

Substitutions: θ = {v1/t1, v2/t2, ..., vn/tn}

Notation: If l is a literal and θ is a substitution,
! then lθ is the result of the substitution
! ! (and similarly, cθ where c is a
clause)

Example: θ = {x/a, y/g(x,b,z)}
+ + P(x,z,f(x,y)) θ = P(a,z,f(a,g(x,b,z)))

A literal is ground if it contains no variables.
A literal l is an instance of l′,

if for some θ, l = l′θ.

KR & R! © Brachman & Levesque 2005 Resolution

Generalizing CNF

Resolution will generalize to handling variables
But how to convert wffs to CNF?
Need three additional steps:

1.!eliminate ⊃ and ≡

2.!push ¬ inward
! using also ¬∀x.α ß ∃x.¬α etc.

3.!standardize variables: each quantifier gets
its own variable
! e.g. ∃x[P(x)] ∧ Q(x) ß ∃z[P(z)] ∧

Q(x)! ! ! where z is a new
variable

4. eliminate all existentials
! (discussed later)

5.!move universals to the front
! using ∀x[α] ∧ β ß ∀x[α∧
β]+ + + where β does not use x

6.!distribute ∨ over ∧

7.!collect terms

Get universally quantified conjunction of
disjunction of literals

! then drop the quantifiers...

Ignore = for now

KR & R! © Brachman & Levesque 2005 Resolution

First-order resolution

Main idea:

! a literal (with variables) stands for all its instances;
will allow all such inferences

So given:
! [P(x,a), ¬Q(x)] and [¬P(b,y), ¬R(b,f(y))],
! want to infer: [¬Q(b), ¬R(b,f(a))]

! since ! [P(x,a), ¬Q(x)] has [P(b,a), ¬Q(b)] and
! ! [¬P(b,y),¬R(b,f(y))] has [¬P(b,a),
¬R(b,f(a))]

Resolution:
! Given clauses: {l1} ∪ C1 and {¬ l2} ∪ C2

! Rename variables, so that distinct in two clauses.
! For any θ such that l1θ = l2θ, can infer (C1 ∪ C2)θ.

+ We say that l1 unifies with l2 and
that θ is a unifier of the two literals

Resolution derivation: as before

Theorem: S |⎯ [] iff S |= []
! ! ! iff S is unsatisfiable

still ignoring =

example below

KR & R! © Brachman & Levesque 2005 Resolution

Example 3

KB:
! ∀x GradStudent(x) ⊃ Student(x)

! ∀x Student(x) ⊃ HardWorker(x)
! GradStudent(sue)

Q:! HardWorker(sue)

[¬HardWorker(sue)]

[¬Student(sue)]

[¬GradStudent(sue)]

[]

x/sue

x/sue

[¬Student(x), HardWorker(x)]

[¬GradStudent(x), Student(x)]

[GradStudent(sue)]

Can label each step
with the unifier

KR & R! © Brachman & Levesque 2005 Resolution

The 3 block example

KB = {On(a,b), On(b,c), Green(a), ¬Green(c)}
already in CNF

Q = ∃x∃y[On(x,y) ∧ Green(x) ∧ ¬Green(y)]
! ! Note: ¬Q has no existentials to eliminate

yields {[¬ On(x,y), ¬ Green(x), Green(y)]} in CNF

[On(b,c)]

[On(a,b)]

[¬On(x,y), ¬Green(x), Green(y)]

[Green(a)]

[¬Green(c)] [¬Green(a), Green(b)]

[¬Green(b), Green(c)]

[¬Green(b)]
[Green(b)]

[]Note: Need to use
On(x,y) twice, for 2 cases

{x/b, y/c}

{x/a, y/b}

KR & R! © Brachman & Levesque 2005 Resolution

Arithmetic

KB:
! ! Plus(zero,x,x)
! Plus(x,y,z) ⊃ Plus(succ(x),y,succ(z))

Q:! ∃u Plus(2,3,u)
! where for readability, we use
! ! 0 for zero,
! ! 3 for succ(succ(succ(zero))) etc.

[¬Plus(2,3,u)]

[¬Plus(1,3,v)]

[¬Plus(0,3,w)]

[]

x/3, w/3

x/0, y/3, v/succ(w), z/w

x/1, y/3, u/succ(v), z/v

Can find the answer
in the derivation
 u/succ(succ(3))
i.e u/5

Can derive Plus(2,3,5)

Rename variables
to keep them distinct

[¬Plus(x,y,z), Plus(succ(x),y,succ(z))]

[Plus(0,x,x)]

KR & R! © Brachman & Levesque 2005 Resolution

Answer predicates

In full FOL, have possibility of deriving ∃xP(x)
without being able to derive P(t) for any t.

! e.g. the three-blocks problem
! ∃x∃y[On(x,y) ∧ Green(x) ∧ ¬Green(y)]
! but cannot derive which block is which

Solution: answer-extraction process
• replace query ∃xP(x) by ∃x[P(x) ∧ ¬A(x)]

! where A is a new predicate symbol called the answer predicate

• instead of deriving [], derive any clause containing just the
answer predicate

• can always convert a derivation of []

Example KB:
+ {Student(john), Student(jane), Happy(john)}

Q:! ∃x[Student(x) ∧ Happy(x)]

Student(john)

[¬Student(x), ¬Happy(x), A(x)]Happy(john)

[¬Student(john), A(john)]

[A(john)]

{x/john}Student(jane)

⇓

An answer is: John

KR & R! © Brachman & Levesque 2005 Resolution

Disjunctive answers

Example KB:
+ + {Student(john), Student(jane),

! ! [Happy(john) ∨ Happy(jane)]}

Q:! ∃x[Student(x) ∧ Happy(x)]

[¬Happy(john), A(john)]

[A(jane), A(john)]

{x/john}

⇓
[¬Student(x), ¬Happy(x), A(x)]

Student(jane)

[¬Happy(jane), A(jane)]

{x/jane}

[Happy(john), Happy(jane)]

[Happy(john), A(jane)]

Student(john)

An answer is: either Jane or JohnNote:
• can have variables in answer

• need to watch for Skolem symbols... (next)

KR & R! © Brachman & Levesque 2005 Resolution

Skolemization

So far, converting wff to CNF ignored existentials
! ! e.g. ∃x∀y∃zP(x,y,z)

Idea: names for individuals claimed to exist,
called Skolem constant and function symbols

there exists an x, call it a
for each y, there is a z, call it f(y)
! ! get ∀yP(a,y,f(y))

In general:
+ ∀x1(...∀x2(...∀xn(...∃y[... y ...] ...)...)...)

is replaced by
+ ∀x1(...∀x2(...∀xn(... [... f(x1,x2,...,xn) ...] ...)...)...)

! where f is a new function symbol that
appears nowhere else

Skolemization does not preserve equivalence
! e.g. |≠ ∃xP(x) ≡ P(a)

But it does preserve satisfiability
! α is satisfiable iff α′ is satisfiable

where α′ is the result of skolemization

Sufficient for resolution!

KR & R! © Brachman & Levesque 2005 Resolution

Variable dependence

Show that ∃x∀yR(x,y) |= ∀y∃xR(x,y)
! show {∃x∀yR(x,y), ¬∀y∃xR(x,y)} unsatisfiable

! ∃x∀yR(x,y) ß ∀yR(a,y)
! ¬∀y∃xR(x,y) ß ∃y∀x¬R(x,y) ß ∀x¬R(x,b)

! then {[R(a,y)], [¬ R(x,b)]} |⎯ [] with {x/a, y/b}.

Show that ∀y∃xR(x,y) |≠ ∃x∀yR(x,y)
! show {∀y∃xR(x,y), ¬∃x∀yR(x,y)} satisfiable

+ ∀y∃xR(x,y) ß ∀yR(f(y),y)
! ¬∃x∀yR(x,y) ß ∀x∃y¬R(x,y) ß ∀x¬R(x,g(x))

! then get {[R(f(y),y)], [¬ R(x,g(x)]}
+ where the two literals do not unify

+

Note:
! important to get dependence of variables correct

+ R(f(y),y) vs. R(a,y) in the above
first argument depends
on second one here

KR & R! © Brachman & Levesque 2005 Resolution

A problem

KB:! LessThan(succ(x),y) ⊃ LessThan(x,y)

Q:! LessThan(zero,zero)

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

Infinite branch of resolvents
! cannot use a simple depth-first procedure

to search for []

[LessThan(x,y), ¬LessThan(succ(x),y)]

Should fail since KB |≠ Q

...

KR & R! © Brachman & Levesque 2005 Resolution

Undecidability

Is there a way to detect when this happens?
No! FOL is very powerful

! can be used as a full programming language
! just as there is no way to detect in general when

a program is looping

There can be no procedure that does this:
! Proc[Clauses] =

If Clauses are unsatisfiable
then return YES
else return NO

However: Resolution is complete
! some branch will contain [], for unsat clauses

So breadth-first search guaranteed to find []
! search may not terminate on satisfiable clauses

[]
...

...
...

infinite
branches

Also true for
Horn clauses
 (later)

KR & R! © Brachman & Levesque 2005 Resolution

Overly specific unifiers

In general, no way to guarantee efficiency, or
even termination

! later: put control into users' hands

one major way:
! reduce redundancy in search, by keeping search

as general as possible

Example
! ! ..., P(g(x),f(x),z)] [¬ P(y,f(w),a), ...
! unified by

! θ1 = {x/b, y/g(b), z/a, w/b}
+ gives P(g(b),f(b),a)

! and by
! θ2 = {x/f(z), y/g(f(z)), z/a, w/f(z)}

+ gives P(g(f(z)),f(f(z)),a).

Might not be able to derive [] from clauses
having overly specific substitutions

! wastes time in search!

KR & R! © Brachman & Levesque 2005 Resolution

Most general unifiers
θ is a most general unifier of literals l1 and l2 iff

1.!! θ unifies l1 and l2

2.!! for any other unifier θ′, there is a another
! ! substitution θ* such that θ′ = θθ*

! ! Note: composition θθ* requires applying θ* to terms in θ

for previous example, an MGU is
! θ = {x/w, y/g(w), z/a}
for which
! θ1 = θ{w/b}

+ θ2 = θ{w/f(z)}

Theorem: Can limit search to MGUs only without loss of
completeness (with certain caveats)

Computing an MGU, given a set of lits {li}
1.!! Start with θ = {}.

2.!! If all the liθ are identical, then done;
! otherwise, get disagreement set, DS
! e.g P(a,f(a,g(z),... P(a,f(a,u,...

! disagreement set, DS = {u, g(z)}

3.!! Find a variable v ∈ DS, and a term t ∈ DS
! not containing v. If not, fail.

4.!! θ = θ{v/t}
5.!! Go to 2

Note: there is a better linear algorithm

KR & R! © Brachman & Levesque 2005 Resolution

Herbrand Theorem

Some 1st-order cases can be handled by
converting them to a propositional form
Given a set of clauses S

• the Herbrand universe of S is the set of all terms formed
using only the function symbols (and constants, at least one)
in S
! for example, if S uses (unary) f, and c, d,!
! U = {c, d, f(c), f(d), f(f(c)), f(f(d)), f(f(f(c))), ...}

• the Herbrand base of S is
+ { cθ | c ∈ S and θ replaces the variables in c by
! ! terms from the Herbrand universe}

Theorem: S is satisfiable iff Herbrand base is
! ! (applies to Horn clauses also)

Herbrand base has no variables, and so is
essentially propositional, though usually infinite

• finite, when Herbrand universe is finite
can use propositional methods (guaranteed to terminate)

• sometimes other “type” restrictions can be used to
keep the Herbrand base finite

include f(t) only if t is the correct type

KR & R! © Brachman & Levesque 2005 Resolution

Resolution is difficult!

First-order resolution is not guaranteed to
terminate.
What can be said about the propositional case?

! Recently shown by Haken that there are unsatisfiable
clauses {c1, c2, ..., cn} such that the shortest derivation
of [] contains on the order of 2n clauses

! Even if we could always find a derivation immediately,
the most clever search procedure will still require
exponential time on some problems

Problem just with resolution?
! Probably not.
! Determining if set of clauses is satisfiable shown by Cook to

be NP-complete
! no easier than an extremely large variety of

computational tasks
! any search task where what is searched for can be

verified in polynomial time can be recast as a
satisfiability problem

» satisfiability
» does graph of cities allow for a full tour of size k miles?
» can N queens be put on an N×N chessboard all safely?
» ...

! Satisfiability is strongly believed by most people to be
unsolvable in polynomial time

KR & R! © Brachman & Levesque 2005 Resolution

Implications for KR

Problem: want to produce entailments of KB as
needed for immediate action

! full theorem-proving may be too difficult for KR!
! need to consider other options ...

– giving control to user
! procedural representations (later)

– less expressive languages
! e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait
! e.g. ! mathematical theorem proving,
! ! ! where we only care about
specific formula

Best to hope for in general: reduce redundancy
! refinements to resolution to improve search

Main example: MGU, as before
! but many other possibilities

! need to be careful to preserve completeness

! ATP: automated theorem proving
! area that studies strategies for proving difficult theorems
! main application: mathematics,

but relevance also to KR

KR & R! © Brachman & Levesque 2005 Resolution

Strategies

1.! Clause elimination
• pure clause

! contains literal l such that ¬ l does not appear in any
other clause

! clause cannot lead to []
• tautology

! clause with a literal and its negation
! any path to [] can bypass tautology

• subsumed clause
! a clause such that one with a subset of its literals is

already present
! path to [] need only pass through short clause
! can be generalized to allow substitutions

2.! Ordering strategies
! many possible ways to order search, but best and

simplest is
• unit preference

! prefer to resolve unit clauses first
! Why? Given unit clause and another clause,

resolvent is a smaller one ß []

KR & R! © Brachman & Levesque 2005 Resolution

Strategies 2

3.! Set of support
! KB is usually satisfiable, so not very useful to resolve

among clauses with only ancestors in KB
! contradiction arises from interaction with ¬Q

! always resolve with at least one clause that has
an ancestor in ¬Q
! preserves completeness (sometimes)

4.! Connection graph
! pre-compute all possible unifications

! build a graph with edges between any two unifiable
literals of opposite polarity
! label edge with MGU

!
! Resolution procedure:

! repeatedly:
– select link
– compute resolvent
– inherit links from parents after substitution

! Resolution as search:
! find sequence of links L1, L2, ... producing []

KR & R! © Brachman & Levesque 2005 Resolution

5.! Special treatment for equality
! instead of using axioms for =

! relexitivity, symmetry, transitivity,
substitution of equals for equals

! use new inference rule: paramodulation

! from {(t=s)} ∪ C1 and {P(... t′...)} ∪ C2

! where tθ = t′θ

! infer {P(... s ...)}θ ∪ C1θ ∪ C2θ.!
! collapses many resolution steps into one
! see also: theory resolution (later)

6.! Sorted logic
! terms get sorts:
! ! x: Male mother:[Person → Female]
! keep taxonomy of sorts

! refuse to unify P(s) with P(t) unless sorts
are compatible
! assumes only “meaningful” paths will lead to []

Strategies 3

[father(john)=bill] [Married(father(x),mother(x))]

[Married(bill,mother(john))]

KR & R! © Brachman & Levesque 2005 Resolution

Finally...

7.! Directional connectives
! ! given [~p, q], can interpret as either

! ! from p, infer q! ! (forward)
! ! to prove q, prove p! (backward)

! ! ! procedural reading of ⊃

! ! In 1st case:
! ! would only resolve [¬ p, q] with [p, ...]

+ producing [q, ...]

+ + In 2nd case:
! ! would only resolve [¬ p, q] with [¬ q, ...]

+ producing [¬ p, ...]

Intended application:
! ! forward: Battleship(x) ⊃ Gray(x)

! ! do not want to try to prove something is
gray by ! proving it is a battleship

! ! backward: Human(x) ⊃ Has(x,spleen)

! ! do not want to conclude from someone
being ! human, that she has each property

the basis for the procedural representations

!

