Goal					
Deductive reasoning in language as close as possible to full FOL					
	−, ∧, ∨, ∃,∀				
Knowledge Level:					
	given KB, α , determine if KB = α .				
or	given an open $\alpha(x_1, x_2,, x_n)$, find $t_1, t_2,, t_n$				
S	such that KB $\models \alpha(t_1, t_2, \dots, t_n)$				
When KE	B is finite $\{\alpha_1, \alpha_2,, \alpha_k\}$				
	KB = α				
iff	$\models [(\alpha_1 \land \alpha_2 \land \land \alpha_k) \supset \alpha]$				
iff	$KB \cup \{\neg \alpha\}$ is unsatisfiable				
iff	$KB \cup \{\neg \alpha\} \models FALSE$				
So want a procedure to test for validity, or satisfiability, or for entailing FALSE.					
Will now consider such a procedure					
first: without quantifiers					
KR & R © Bra	achman & Levesque 2005 Resolution				

Clausal Representation			
Formula = set of clauses			
Clause = set of literals			
Literal = atomic sentence or its negation positive literal and negative literal			
Notation:			
If <i>l</i> is a literal, then $\neg l$ is its complement			
$p \Rightarrow \neg p \qquad \neg p \Rightarrow p$			
To distinguish clauses from formulas:			
- [and] for clauses: $[p, \neg r, s]$			
 - { and } for formulas: {[p, ¬r, s], [p, r, s], [¬p]} [] is the empty clause {} is the empty formula So {} is different from {[]}! 			
Interpretation:			
Formula understood as conjunction of clauses			
Clause understood as <u>disjunction</u> of literals			
Literals understood normally			
So:			
$\{[p,\neg q], [r], [s]\}$ is representation of $((p \lor \neg q) \land r \land s)$			
[] is a representation of FALSE			
<pre>{} is a representation of TRUE</pre>			
KR & R © Brachman & Levesque 2005 Resolution			

CNF and DNF

Resolution rule of inference				
Given two clauses, infer a new clause:From clause $\{p\} \cup C_1,$ and $\{\neg p\} \cup C_2,$ infer clause $C_1 \cup C_2.$				
$C_1 \cup C_2$ is called a <u>resolvent</u> of input clauses with respect to <i>p</i> .				
Example: From clauses $[w, p, q]$ and $[w, s, \neg p]$, have $[w, q, s]$ as resolvent wrt p .				
Special Case: [p] and [$\neg p$] resolve to [] C_1 and C_2 are empty				
A <u>derivation</u> of a clause c from a set S of clauses is a sequence $c_1, c_2,, c_n$ of clauses, where the last clause $c_n = c$, and for each c_i , either				
$1.c_i \in S,$ $2.c_i$ is a result in the deri	or olvent of two earlier clauses vation			
Write: $S \vdash c$ if	there is a derivation			
KR & R © Brachman & Leve	sque 2005 Resolution			

Rationale

Resolution is a symbol-level rule of inference, but has a connection to knowledge-level logical interpretations Resolvent is entailed by input clauses. Suppose $I \models (p \lor \alpha)$ and $I \models (\neg p \lor \beta)$ Case 1: $I \models p$ then $I \models \beta$, so $I \models (\alpha \lor \beta)$. Case 2: $I \neq p$ then $I \models \alpha$, so $I \models (\alpha \lor \beta)$. Either way, $I \models (\alpha \lor \beta)$. So: $\{(p \lor \alpha), (\neg p \lor \beta)\} \models (\alpha \lor \beta).$ Special case: [p] and $[\neg p]$ resolve to [], so $\{[p], [\neg p]\} \models \mathsf{FALSE}$ that is: $\{[p], [\neg p]\}$ is unsatisfiable KR & R © Brachman & Levesque 2005 Resolution

A procedure for entailment

To determine if KB $\models \alpha$,

- put KB, $\neg \alpha$ into CNF to get $\textit{S}, \ \text{as before}$
- check if S ⊢[].

If KB = {}, then we are testing the validity of α .

Non-deterministic procedure

1.	Check if [] is in <i>S</i> . If yes, then return UNSATISFIABLE
2.	Check if there are two clauses \boldsymbol{c}_1
and c_2	in S such that they resolve to
produce	in 3 such that they resolve to
	a c_3 not already in <i>S</i> .
	If no, then return SATISFIABLE
3.	Add c_3 to S and go to 1.

Note: need only convert KB to CNF once

- · can handle multiple queries with same KB
- after addition of new fact $\alpha, \mbox{can simply add new clauses } \alpha' \mbox{to KB}$

Resolution

KR & R © Brachman & Levesque 2005

Quantifiers			
Clausal form as before, but atom is $P(t_1, t_2,, t_n)$, where t_i may contain variables			
Interpretation as before, but variables are understood <u>universally</u>			
Example: {[$P(x)$, $\neg R(a_y(b,x))$], [$Q(x,y)$]}			
interpreted as			
$\forall x \forall y \{ [R(a, f(b, x)) \supset P(x)] \land Q(x, y) \}$			
Substitutions: $\theta = \{v_1/t_1, v_2/t_2,, v_n/t_n\}$			
Notation: If <i>l</i> is a literal and θ is a substitution, then $l\theta$ is the result of the substitution (and similarly, $c\theta$ where <i>c</i> is a			
clause)			
Example: $\theta = \{x/a, y/g(x,b,z)\}$			
$P(x,z,f(x,y)) \Theta = P(a,z,f(a,g(x,b,z)))$			
A literal is ground if it contains no variables.			
A literal <i>l</i> is an <u>instance</u> of <i>l'</i> ,			
if for some θ , $l = l'\theta$.			
KR & R © Brachman & Levesque 2005 Resolution			

First-order resolution		
Main idea:		
a literal (with variables) stands for all its instances; will allow all such inferences		
So given:		
$[P(x,a), \neg Q(x)]$ and $[\neg P(b,y), \neg R(b,f(y))],$		
want to infer: $[\neg Q(b), \neg R(b, f(a))]$		
since $[P(x,a), \neg Q(x)]$ has $[P(b,a), \neg Q(b)]$ and $[\neg P(b,y), \neg R(bf(y))]$ has $[\neg P(b,a), \neg R(bf(a))]$		
Resolution:		
Given clauses: $\{l_1\} \cup C_1$ and $\{\neg l_2\} \cup C_2$		
Rename variables, so that distinct in two clauses.		
For any θ such that $l_1 \theta = l_2 \theta$, can infer $(C_1 \cup C_{\theta}) \theta_{\text{imple below}}$		
We say that l_1 <u>unifies</u> with l_2 and that θ is a <u>unifier</u> of the two literals		
Resolution derivation: as before still ignoring =		
Theorem: $S \models []$ iff $S \models []$ iff S is unsatisfiable		
KR & R © Brachman & Levesque 2005 Resolution		

Variable dependence

Most general unifiers θ is a most general unifier of literals l_1 and l_2 iff θ unifies l_1 and l_2

- 2. for any other unifier θ' , there is a another substitution θ^* such that $\theta' = \theta \theta^*$ Note: composition $\theta \theta^*$ requires applying θ^* to terms in θ
 - for previous example, an MGU is $\theta = \{x/w, \ y/g(w), z/a\}$
 - for which

1.

```
\theta_1 = \theta\{w/b\}
```

```
\theta_2 = \theta\{w/f(z)\}
```

Theorem: Can limit search to MGUs only without loss of completeness (with certain caveats)

Computing an MGU, given a set of lits $\{l_i\}$

- 1. Start with $\theta = \{\}$.
- 2. If all the $l_i \theta$ are identical, then done; otherwise, get disagreement set, DS e.g P(a,f(a,g(z),...,P(a,f(a,u,...)disagreement set, $DS = \{u, g(z)\}$
- Find a variable $v \in DS$, and a term $t \in DS$ З. not containing v. If not, fail.
- 4. $\theta = \theta \{ v/t \}$
- Go to 2 5.

Note: there is a better linear algorithm © Brachman & Levesque 2005 KR & R Resolution

Finally				
7. Directiona	l connectives			
aiver	$[\sim p, q]$, can interpret as either			
0	p, infer q (forward)			
to pro	by q , prove p (backward) procedural reading of \supset			
In 1s	t case:			
	would only resolve $[\neg p, q]$ with $[p,]$ producing $[q,]$			
In 2n	d case:			
	d only resolve $[\neg p, q]$ with $[\neg q,]$ ucing $[\neg p,]$			
Intended application	on:			
forw	ard: Battleship(x) \supset Gray(x)			
gray by	do not want to try to prove something is proving it is a battleship			
back	ward: Human(x) \supset Has(x,spleen)			
being	do not want to conclude from someone human, that she has each property			
the basis for t	he procedural representations			
KR & R © Brachman & Leve	sque 2005 Resolution			