7. Parameterized branching algorithms
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2016

Contents

1 Running time analysis 1
2 Feedback Vertex Set 2
3 Maximum Leaf Spanning Tree 3
4 Further Reading 6

1 Running time analysis

Search trees

Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k / a} \cdot(k / a+1)$.

If k / a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.

Recall: Measure Based Analysis
For more precise running time upper bounds:
Lemma 1 (Measure Analysis Lemma). Let

- A be a branching algorithm
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,
such that on input I, A calls itself recursively on instances I_{1}, \ldots, I_{k}, but, besides the recursive calls, uses time $O\left((\eta(I))^{c}\right)$, such that

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1, \text { and } \tag{1}\\
2^{\mu\left(I_{1}\right)}+\ldots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} . \tag{2}
\end{align*}
$$

Then A solves any instance I in time $O\left(\eta(I)^{c+1}\right) \cdot 2^{\mu(I)}$.

2 Feedback Vertex Set

A feedback vertex set of a multigraph $G=(V, E)$ is a set of vertices $S \subseteq V$ such that $G-S$ is acyclic.

```
Feedback Vertex Set
    Input: }\quad\mathrm{ Multigraph }G=(V,E),\mathrm{ integer }
    Parameter: k
    Question: Does G have a feedback vertex set of size at most k
```


Simplification Rules

We apply the first applicabl \rrbracket^{T} simplification rule.
(Loop)
If G has a loop $v v \in E$, then set $G \leftarrow G-v$ and $k \leftarrow k-1$.

(Multiedge)

If E contains an edge $u v$ more than twice, remove all but two copies of $u v$.

(Degree-1)

If $\exists v \in V$ with $d_{G}(v) \leq 1$, then set $G \leftarrow G-v$.

(Budget-exceeded)

If $k<0$, then return No.

(Degree-2)

If $\exists v \in V$ with $d_{G}(v)=2$, then denote $N_{G}(v)=\{u, w\}$ and set $G \leftarrow G^{\prime}=(V \backslash\{v\},(E \backslash\{v u, v w\}) \cup\{u w\})$.
Lemma 2. (Degree-2) is sound.
Proof. Suppose S is a feedback vertex set of G of size at most k. Let

$$
S^{\prime}= \begin{cases}S & \text { if } v \notin S \\ (S \backslash\{v\}) \cup\{u\} & \text { if } v \in S .\end{cases}
$$

Now, $\left|S^{\prime}\right| \leq k$ and S^{\prime} is a feedback vertex set of G^{\prime} since every cycle in G^{\prime} corresponds to a cycle in G, with, possibly, the edge $u w$ replaced by the path (u, v, w).

Suppose S^{\prime} is a feedback vertex set of G^{\prime} of size at most k. Then, S^{\prime} is also a feedback vertex set of G.

Remaining issues

- A select-discard branching decreases k in only one branch
- One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k

Idea:

- An acyclic graph has average degree <2
- After applying simplification rules, G has average degree ≥ 3
- The selected feeback vertex set needs to be incident to many edges
- Does a feedback vertex set of size at most k contain at least one vertex among the $f(k)$ vertices of highest degree?

[^0]The fvs needs to be incident to many edges
Lemma 3. If S is a feedback vertex set of $G=(V, E)$, then

$$
\sum_{v \in S}\left(d_{G}(v)-1\right) \geq|E|-|V|+1
$$

Proof. Since $F=G-S$ is acyclic, $|E(F)| \leq|V|-|S|-1$. Since every edge in $E \backslash E(F)$ is incident with a vertex of S, we have

$$
\begin{aligned}
|E| & =|E|-|E(F)|+|E(F)| \\
& \leq\left(\sum_{v \in S} d_{G}(v)\right)+(|V|-|S|-1) \\
& =\left(\sum_{v \in S}\left(d_{G}(v)-1\right)\right)+|V|-1 .
\end{aligned}
$$

The fvs needs to contain a high-degree vertex
Lemma 4. Let G be a graph with minimum degree at least 3 and let H denote a set of $3 k$ vertices of highest degree in G. Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof. Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H=\emptyset$. Then,

$$
\begin{aligned}
2|E|-|V| & =\sum_{v \in V}\left(d_{G}(v)-1\right) \\
& =\sum_{v \in H}\left(d_{G}(v)-1\right)+\sum_{v \in V \backslash H}\left(d_{G}(v)-1\right) \\
& \geq 3 \cdot\left(\sum_{v \in S}\left(d_{G}(v)-1\right)\right)+\sum_{v \in S}\left(d_{G}(v)-1\right) \\
& \geq 4 \cdot(|E|-|V|+1) \\
\Leftrightarrow \quad 3|V| & \geq 2|E|+4
\end{aligned}
$$

But this contradicts the fact that every vertex of G has degree at least 3 .

Algorithm for Feedback Vertex Set

Theorem 5. Feedback Vertex Set can be solved in $O^{*}\left((3 k)^{k}\right)$ time.
Proof (sketch). • Exhaustively apply the simplification rules.

- The branching rule computes H of size $3 k$, and branches into subproblems $(G-v, k-1)$ for each $v \in H$.

Current best: $O^{*}\left(3.619^{k}\right)$ [Kociumaka, Pilipczuk, 2014]

3 Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph $G=(V, E)$ is a subgraph of G that is a tree and has $|V|$ vertices.

```
Maximum Leaf Spanning Tree
    Input: connected graph G}\mathrm{ , integer }
    Parameter: k
    Question: Does G have a spanning tree with at least k leaves?
```


Property

A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 6. Let $G=(V, E)$ be a connected graph. G has a k-leaf tree $\Leftrightarrow G$ has a k-leaf spanning tree.
Proof. (\Leftarrow) : trivial
(\Rightarrow) : Let T be a k-leaf tree in G. By induction on $x:=|V|-|V(T)|$, we will show that T can be extended to a k-leaf spanning tree in G.
Base case: $x=0 \checkmark$.
Induction: $x>0$, and assume the claim is true for all $x^{\prime}<x$. Choose $u v \in E$ such that $u \in V(T)$ and $v \notin V(T)$. Since $T^{\prime}:=(V(T) \cup\{v\}, E(T) \cup\{u v\})$ has $\geq k$ leaves and $<x$ external vertices, it can be extended to a k-leaf spanning tree in G by the induction hypothesis.

Strategy

- The branching algorithm will check whether G has a k-leaf tree.
- A tree with ≥ 3 vertices has at least one internal ($=$ non-leaf) vertex.
- "Guess" an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.
- In any branch, the algorithm has computed
- T - a tree in G
- I - the internal vertices of T, with $r \in I$
- B - a subset of the leaves of T where T may be extended: the boundary set
- L - the remaining leaves of T
- X - the external vertices $V \backslash V(T)$
- The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.

Simplification Rules

Apply the first applicable simplification rule:
(Halt-Yes)
If $|L|+|B| \geq k$, then return Yes.
(Halt-No)
If $|B|=0$, then return No.

(Non-extendable)

If $\exists v \in B$ with $N_{G}(v) \cap X=\emptyset$, then move v to L.

Branching Lemma

Lemma 7 (Branching Lemma). Suppose $u \in B$ and there exists a k-leaf tree T^{\prime} extending T where u is an internal vertex. Then, there exists a k-leaf tree $T^{\prime \prime}$ extending $\left(V(T) \cup N_{G}(u), E(T) \cup\left\{u v: v \in N_{G}(u) \cap X\right\}\right)$.

Proof. Start from $T^{\prime \prime} \leftarrow T^{\prime}$ and perform the following operation for each $v \in N_{G}(u) \cap X$.
If $v \notin V\left(T^{\prime}\right)$, then add he vertex v and the edge $u v$. Otherwise, add the edge $u v$, creating a cycle C in T and remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal.

Follow Path Lemma

Lemma 8 (Follow Path Lemma). Suppose $u \in B$ and $\left|N_{G}(u) \cap X\right|=1$. Let $N_{G}(u) \cap X=\{v\}$. If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.
Proof. Suppose not, and let T^{\prime} be a k-leaf tree extending T where u is internal and v is a leaf. But then, $T-v$ is a k-leaf tree as well.

Algorithm

- Apply simplification rules
- Select $u \in B$. Branch into
- $u \in L$
$-u \in I$. In this case, add $X \cap N_{G}(u)$ to B (Branching Lemma). In the special case where $\left|X \cap N_{G}(u)\right|=1$, denote $\{v\}=X \cap N_{G}(u)$, make v internal, and add $N_{G}(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).
- In one branch, a vertex moves from B to L; in the other branch, $|B|$ increases by at least 1 .

Running time analysis

- Measure $\mu:=2 k-2|L|-|B| \geq 0$.
- Branch where $u \in L$:
$-|B|$ decreases by $1,|L|$ increases by 1
- μ decreases by 1
- Branch where $u \in I$.
$-u$ moves from B to I
$-\geq 2$ vertices move from X to B
- μ decreases by at least 1
- Binary search tree
- Height $\leq \mu \leq 2 k$

Result for Maximum Leaf Spanning Tree

Theorem 9 ([Kneis, Langer, Rossmanith, 2011]). Maximum Leaf Spanning Tree can be solved in $O^{*}\left(4^{k}\right)$ time.
Current best: $O^{*}\left(3.72^{k}\right)$ [Daligault, Gutin, Kim, Yeo, 2010]

Exercise

A cluster graph is a graph where every connected component is a complete graph.

```
Cluster Editing
    Input: Graph G}=(V,E)\mathrm{ , integer }
    Parameter: k
    Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?
```


Recall that G is a cluster graph iff G contains no induced P_{3} (path with 3 vertices) and has a kernel with $O\left(k^{2}\right)$ vertices.

- Design an algorithm for Cluster Editing with running time $3^{k} \cdot k^{O(1)}+n^{O(1)}$.

4 Further Reading

- Chapter 3, Bounded Search Trees in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 3, Bounded Search Trees in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter 8, Depth-Bounded Search Trees in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.

[^0]: ${ }^{1} \mathrm{~A}$ simplification rule is applicable if it modifies the instance.

