THE UNIVERSITY OF NEW SOUTH WALES

SEMESTER 2 2018

COMP6741: PARAMETERIZED AND EXACT COMPUTATION

TRIAL mid-session Quiz

- 1. TIME ALLOWED 90 minutes
- 2. READING TIME 0 minutes
- 3. THIS EXAMINATION PAPER HAS 3 PAGES
- 4. TOTAL NUMBER OF QUESTIONS 4
- 5. TOTAL MARKS AVAILABLE 100
- 6. ALL QUESTIONS ARE NOT OF EQUAL VALUE. MARKS AVAILABLE FOR EACH QUESTION ARE SHOWN IN THE EXAMINATION PAPER.
- 7. ALL ANSWERS MUST BE WRITTEN IN INK. EXCEPT WHERE THEY ARE EXPRESSLY REQUIRED, PENCILS MAY BE USED ONLY FOR DRAWING, SKETCHING OR GRAPHI-CAL WORK.
- 8. THIS PAPER MAY NOT BE RETAINED BY CANDIDATE.

SPECIAL INSTRUCTIONS

- 9. ANSWER ALL QUESTIONS.
- 10. CANDIDATES MAY BRING TO THE EXAMINATION: UNSW approved calculator, all textbooks and lecture notes (handwritten or printed), private documents, etc., but no electronic material and no other electronic devices.
- 11. THE FOLLOWING MATERIALS WILL BE PROVIDED: answer booklet

Your answers may rely on theorems, lemmas and results stated in the lecture notes.

1 Basics of Parameterized Complexity

[20 marks]

Prove the following theorem.

Theorem 1. Let Π be a parameterized decision problem. If Π is FPT, then there exists a computable function f such that Π can be solved in time $f(k) + n^{O(1)}$, where k is the parameter and n is the instance size.

2 Max Cut

[40 marks]

A *cut* in a graph G = (V, E) is a partition of the vertex set V into two sets U and W. The *size of a cut* is the number of edges with one endpoint in U and the other endpoint in W, i.e., $|\{uv \in E : u \in U \text{ and } v \in W\}|$. Consider the MAX CUT problem.

Max Cut	
Input:	A graph $G = (V, E)$, an integer k
Parameter:	k
Question:	Does G have a cut of size at least k ?

- 1. Design a simplification rule that removes vertices of degree 0. [10 marks]
- 2. Design a simplification rule that removes vertices of degree 1. [10 marks]
- 3. Obtain a kernel with O(k) vertices and edges. You may use the following theorem without proving its correctness: [20 marks]

Theorem 2. Let G = (V, E) be a graph. There is a function $\alpha : V \to \{0, 1\}$ assigning the label 0 or 1 to each vertex in V such that at least |E|/2 edges have one endpoint labeled 0 and the other endpoint labeled 1.¹

3 Kernel Lower Bound

Recall that a *clique* in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every two vertices from S are adjacent in G. Consider the NP-complete GENERALIZED EDGE CLIQUE COVER problem.

Generalized Edge Clique Cover (GECC)		
Input:	A graph $G = (V, E)$, a subset of edges $R \subseteq E$, and an integer $k \leq V $	
Parameter:	k	
Question:	Is there a set \mathcal{C} of at most k cliques in G such that each $e \in R$ is contained in at least	
	one of these cliques?	

• Prove that GECC has no polynomial kernel unless $coNP \subseteq NP/poly$.

[20 marks]

¹Aside: The theorem can be proved by a simple probabilistic argument: If we randomly label the vertices of G with 0 and 1, the expected number of edges where the endpoints have distinct labels is |E|/2. Therefore, there exists at least one labeling where at least |E|/2 edges have distinct labels on their endpoints.

4 W[1]-hardness

We denote by $G = (A \uplus B, E)$ a *bipartite graph* whose vertex set is partitioned into two independent sets A and B. Consider the HALL SET problem, which asks for a subset S of at most k vertices in A whose neighborhood is smaller than S.

HALL SET (HS)		
	Input:	A bipartite graph $G = (A \uplus B, E)$ and an integer k
	Parameter:	k
	Question:	Is there a set $S \subseteq A$ of size at most k such that $ N(S) < S $?

• Show that HALL SET is W[1]-hard.

Hints: Reduce from CLIQUE. For a set E' of edges, the set $V(E') = \{u \in e : e \in E'\}$ denotes the set of endpoints of E'. Observe that for a set E' of $\binom{k}{2}$ edges, we have that $|V(E')| \leq k$ if and only if V(E') is a clique of size k.