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COMP9334
Capacity Planning for Computer Systems 
and Networks

Week 7: Discrete event simulation (1)
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Week 3: Queues with Poisson arrivals

• Multi-server M/M/m
1

2

m

m servers

Arrivals

Departures

Exponential inter-arrivals (λ)
Exponential service time (µ)

• Single-server M/M/1 Arrivals Departures
Exponential inter-arrivals (λ)
Exponential service time (µ)
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Week 4: Closed-queueing networks  

• Analyse closed-queueing network with Markov chain
• The transition between states is caused by an arrival or a 

departure according to exponential distribution

CPU

Disk

• General procedure
• Identify the states
• Find the state transition rates
• Set up the balance equations
• Solve for the steady state 

probabilities
• Find the response time etc.
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Week 5: Queues with general arrival & service time

• Queues with general inter-arrival and service time distributions

Arrivals DeparturesGeneral Inter-arrivals time distribution
General service time distribution

• M/G/1 queue
• Can calculate delay with the P-K 

formula

• G/G/1 queue
• No explicit formula, get a bound or 

approximation
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Analytical methods for queues

• You had learnt how to solve a number of queues 
analytically (= mathematically) given their
• Inter-arrival time probability distribution
• Service time probability distribution

• Queues that you can solve now include M/M/1, M/M/m, 
M/G/1, M/G/1 with priorities etc.
• If you know the analytical solution, this is often the most 

straightforwad way to solve a queueing problem
• Unfortunately, many queueing problems are still 

analytically intractable! 

• What can you do if we have an analytically intractable 
queueing problem? 
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This lecture and next lecture

• The lectures for these two weeks will focus on using 
discrete event simulation for queueing problems
• Simulation is an imitation of the operation of real-life system over 

time.

• The topics for this week are
• What are discrete event simulation?
• How to structure a discrete event simulation?
• How to generate pseudo-random numbers for simulation?

• Next week
• How to choose simulation parameters? 
• How to analyse data?
• What are the pitfalls that you need to avoid? 
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Motivating example

• Consider a single-server queue 
with only one buffer space (= 
waiting room)

• If a customer arrives when the 
buffer is occupied, the customer is 
rejected.

• Given the arrival times and service 
times in the table on the right, find
• The mean response time
• % of rejected customers
Assuming an idle server at time = 0.

Arrivals Departures
Customer
number

Arrival 
time

Service 
time

1 3 4
2 8 3
3 9 4
4 17 6
5 18 3
6 19 2
7 20 2
8 25 3
9 27 2
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Let us try a graphical solution

• In the graphical solution, we will keep track of
• The status of the server: busy or idle
• The status of the buffer: occupied or vacant

Arrival pattern

3 8 9 17 18 19 20 25  27

(1) (2)(3) (4)(5)(6)(7) (8)(9)

time

Customer # is enclosed within ( )

Server status

time

busy

idle
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A graphical solution

Arrival pattern

Server status 

3 8 9 17 18 19 20 25    27

Departure from
Server /
Reject

(1)

(1) (2)

(1)

(2)

(2)

(3)

(3)

(3)

(4)(5)(6)(7) (8)(9)

(3)

(4)

(5)

(6)(7) (4)

(5)

(5)

(8)

(8)

(8)

7 11 15 23 26 29

(9)

(9)

(9)

31

busy

idle

Buffer status 
occupied

vacant
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Using the graphical solution (1)

Arrival pattern

3 8 9 17 18 19 20 25  27

Departure from
Server /
Reject

(1)

(1) (2)

(2)(3) (4)(5)(6)(7) (8)(9)

(3) (6)(7) (4) (5) (8)

7 11 15 23 26 29

(9)

31

We can find 
the response
time of each 
customer &
average 
response
time 
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Using the graphical solution (2)

Server status 

Departure from
Server /
Reject

(1) (2)

(1) (2) (3)

(3)

(4)

(6)(7) (4)

(5)

(5)

(8)

(8)

7 11 15 23 26 29

(9)

(9)

31

busy

idle

We can find the server utilisation

We can find % of rejected customers
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From graphical solution to computer solution (1)

• How can we turn this graphical solution into a computer 
solution, i.e. a computer program that can solve the 
problem for us

• We need to keep track of the status of the server and the 
status of the buffer, 
• This allows us to make decisions
• E.g. If server is BUSY and buffer is OCCUIPIED, an arriving 

customer is rejected.
• E.g. If server is BUSY and buffer is VACANT, an arriving customer 

goes to the buffer.
• E.g. If server is IDLE, an arriving customer goes to the sever

• What this means: We need to keep track of the status of 
some variables in our computer solution.
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From graphical solution to computer solution (2)

• Observation #1:
• An arriving or departing customer 

causes the server or buffer status 
to change

• Examples:
• At time = 3, the arrival of 

customer #1 causes the server 
to switch from IDLE to BUSY

• At time = 7, the departure of 
customer #1 causes the server 
to switch from BUSY to IDLE

• At time = 9, the arrival of 
customer #3 causes the buffer to 
switch from VACANT to 
OCCUPIED

• Etc. 

3 8 9

(1)

(1) (2)

(1)

(2)

(2)

(3)

(3)

(3)

(3)

7 11 15

busy

idle

occupied

vacant
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From graphical solution to computer solution (3)

• Let us call the arrival of a 
customer or the departure of a 
customer an event

• Observation #2:
• The status of the server and the 

status of the buffer remain the 
same between two consecutive 
events

• What this means:
• We need to keep track of the 

timing of the events
• Events can cause status 

transitions
• In between events, status 

remain the same

3 8 9

(1)

(1) (2)

(1)

(2)

(2)

(3)

(3)

(3)

(3)

7 11 15

busy

idle

occupied

vacant
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From graphical solution to computer solution (4)

• In our computer solution, we will use a master clock to 
keep track of the current time

• We will advance the master clock from event to event
• In order to see how the computer solution works, let us try 

it out on paper first 
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On paper simulation
• In our simulation, we keep track of a number of variables

• MC = Master clock
• Status of 

• Server: 1 = BUSY, 0 = IDLE
• Buffer: 1 = OCCUPIED, 0 = VACANT

• Event time:
• Next arrival event and service time of this arrival
• Next departure event and arrival time of this departure

• The (arrival time, service time) of the customer in buffer
• In order to compute the response time, we keep track of 

• The cumulative response time (T)
• Cumulative number of customers rejected (R)

MC Next arrival Next departure Server 
status

Buffer 
status
+ customer 
in buffer

T R
Arrival 
time

Service 
time

Departure 
time

Arrival time of this 
departure

0 3 4 - - 0 0 0 0
3 8 3 7 3 1 0 0 0
7 8 3 - - 0 0 4 0
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On paper simulation

MC Next arrival Next departure Server 
status

Buffer 
status +
Customer 
in buffer

T R
Arrival 
time

Service 
time

Departure 
time

Arrival time of this 
departure

0 3 4 - - 0 0 0 0
3 8 3 7 3 1 0 0 0
7 8 3 - - 0 0 4 0
8 9 4 11 8 1 0 4 0
9 17 6 11 8 1 1

(9,4)
4 0

11 17 6 15 9 1 0 7 0
15 17 6 - - 0 0 13 0
Can you continue?

(Arrival time, service time) of the
customer in the buffer. 
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Logic of the program (1)

Find next event

Advance master clock to the next 
event

Take appropriate action depending on
type of event

• At each step, we advance to the next event that will take 
place
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Arrival event

Server  IDLE
(Buffer VACANT)

Server  BUSY
Buffer VACANT

Server BUSY
Buffer OCCUPIED

Handling an arrival event

• Add a departure event 
with departure time = 
current time + service 
time of the arrival

• Change server status to 
BUSY

• Change buffer status 
to OCCUPIED

• Store the arrival time 
and service time of 
this arrival with buffer 
information

• Reject this 
customer

• Increment the 
cumulative number 
of rejected 
customers by one

• Look up the list of arrival to fill in the information for the next arrival 
event

Three cases according 
to the server and/or 
buffer status
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Departure event

Buffer VACANT Buffer OCCUPIED

Handling an departure event

• Change server status to 
IDLE

• Next departure event 
becomes empty

• Update the departure event with 
information of the customer in the buffer

• Next departure time = 
current time + service time of the 
customer in the buffer

• Change buffer status to VACANT

• Update the cumulative response time
• T ç T + current time - arrival time of the departing customer

Two cases according to 
the buffer status
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Discrete event simulation

• The above computer program is an example of a discrete 
event simulation

• It allows you to solve a queueing problem with one server 
and one buffer space

• You can generalise the above procedure to
• Multi-server
• Finite or infinite buffer space
• Different queueing disciplines

• Let us generalise it to the case of single-server with infinite 
buffer
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Single server with infinite buffer simulation

• In this case, we will use buffer status to denote the number 
of customers in buffer
• Buffer status = 0, 1, 2, 3, …

• We also need to store all the (arrival time, service time) of 
all the customers in the buffer

• Compare with the single-server single-buffer case, we only 
need to change the handling of
• An arrival event
• A departing event
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Arrival event

Server IDLE Server BUSY

Handling an arrival event

• Add a departure event with 
departure time = current time + 
service time of the arrival

• Change server status to BUSY

• Increment number of customers 
in the buffer by 1

• Store the arrival time and 
service time of this arrival with 
buffer information

• Look up the list of arrival to fill in the information for the next arrival

Two cases according to 
the server status
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Departure event

Buffer = 0 Buffer ≠ 0

Handling an departure event

• Change server status to 
IDLE

• Departure event 
becomes empty

• Update the departure event with first 
customer in the buffer

• Next departure time = 
current time + service time of the first 
customer in the buffer

• Delete first customer from buffer
• Decrement number of customers in the 

buffer by 1

• Update the cumulative response time
• T ç T + current time - arrival time of the departing customer

Two cases according to 
the buffer status
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Generating random numbers

• We have so far assume that you can look up a list of arrival 
times and service times for the next customer

• However, sometimes you want to solve a queue with some 
specific inter-arrival time and service time probability 
distribution
• For example, if 

• inter-arrival time x is drawn from 1/x2 with x ≥ 1
• Service time y is drawn from 2/y3 with y ≥ 1

• In this case, you will need to generate random numbers with the 
given probability distribution

• We will now study how we can generate random numbers
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Random number generator in C

• In C, the function rand() generates random integers 
between 0 and RAND_MAX 

• E.g. The following program generates 10 random integers:

#include <stdio.h>
#include <stdlib.h>

int main ()
{

int i;

for (i = 0; i < 10; i++)
printf("%d\n",rand()); 

return; 

}

Let us generate 10,000 random
integers using rand() and see
how they are distributed

This C file “genrand1.c” is available
from the course web site.
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Distribution of 10000 entries from rand()

Sort into 50 bins

If the numbers 
are really 
uniformly 
distributed, we 
expect 200 
numbers
in each bin.

The numbers are
almost uniformly
distributed
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LCG 

• The random number generator in C is a Linear Congruential Generator 
(LCG)

• LCG generates a sequence of integers {Z1, Z2, Z3, …}  according to the 
recursion

Zk = a Zk-1 + c (mod m) 
where a, c and m are integers

• By choosing a, c, m, Z1 appropriately, we can obtain a sequence of 
seemingly random integers

• If a = 3, c = 0, m = 5, Z1 = 1, LCG generates the sequence 1, 3, 4, 2, 1, 
3, 4, 2, …

• Fact: The sequence generated by LCG has a cycle of m-1
• We must choose m to be a large integer

• For C, m = 231

• The proper name for the numbers generated is pseudo-random 
numbers 
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Seed  

• LCG generates a sequence of integers {Z1, Z2, Z3, …}  according to the 
recursion

Zk = a Zk-1 + c (mod m) 
where a, c and m are integers

• The term Z1 is call a seed
• By default, C also uses 1 as the seed and it will generate the same 

random sequence
• However, sometimes you need to generate different random 

sequences and you can change the seed by calling the function srand() 
before using rand() 
• Demo genrand1.c, genrand2.c and genrand3.m
• genrand1.c – uses the default seed
• genrand2.c – sets the seed using command line argument 
• genrand3.c – sets the seed using current time 
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Uniformly distributed random numbers between (0,1)

• With rand() in C, you can generate uniformly distributed 
random numbers in between 1 and 231-1(= RAND_MAX)
• By dividing the numbers by RAND_MAX, you get randomly 

distributed numbers in (0,1)

• In Matlab, rand(n,1) generates a sequence of n uniformly 
distributed random numbers in (0,1)
• Matlab uses the Mersenne Twister random number generator with 

a period of 219937 - 1 
• If you use 109 random number in a second, the sequence will only 

repeat after 105985 years 

• Why are uniformly distributed random numbers important?
• If you can generate uniformly distributed random numbers between 

(0,1), you can generate random numbers for any probability 
distribution



Fair coin distribution

• You can generate random numbers between 0 and 1 
• You want to use these random numbers to imitate fair coin 

tossing, i.e. 
• Probability of HEAD = 0.6
• Probability of TAIL = 0.4 

• You can do this using the following algorithm
• Generate a random number u
• If u < 0.6, output HEAD 
• If u ≥ 0.6, output TAIL 
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A loaded dice 

• You want to create a loaded dice with probability mass function 
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• The algorithm is: 
• Generate a random number u

0.1

0.2

0.3

• If          u < 0.1, output 1
• If 0.1 ≤ u < 0.3, output 2
• If 0.3 ≤ u < 0.4, output 3

• If 0.4 ≤ u < 0.7, output 4
• If 0.7 ≤ u < 0.8, output 5
• If 0.8 ≤ u         , output 6

1 2 3 4 5 6



Cumulative probability distribution
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0.1
0.2
0.3

1 2 3 4 5 6
Probability that the dice gives a value ≤ x

x
21 3 4 5 6

0.1
0.3
0.4
0.7
0.8
1Ex: Can you 

work out what
these levels
should be 

33



Comparing algorithm with cumulative distribution
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• The algorithm is: 
• Generate a random number u
• If          u < 0.1, output 1
• If 0.1 ≤ u < 0.3, output 2
• If 0.3 ≤ u < 0.4, output 3

• If 0.4 ≤ u < 0.7, output 4
• If 0.7 ≤ u < 0.8, output 5
• If 0.8 ≤ u         , output 6

Probability that the dice gives a value ≤ x

x
21 3 4 5 6

0.1
0.3
0.4
0.7
0.8
1Ex: What do

you notice
about the 
intervals in
the algorithm
and the 
cumulative
distribution? 



Graphical interpretation of the algorithm
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• The algorithm is: 
• Generate a random number u
• If          u < 0.1, output 1
• If 0.1 ≤ u < 0.3, output 2
• If 0.3 ≤ u < 0.4, output 3

• If 0.4 ≤ u < 0.7, output 4
• If 0.7 ≤ u < 0.8, output 5
• If 0.8 ≤ u         , output 6

Probability that the dice gives a value ≤ x

x
21 3 4 5 6

0.1
0.3
0.4
0.7
0.8
1Ex: Let us

assume
u = 0.5126,
what should
the algorithm
output?

Output 4
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Graphical representation of inverse transform method

• Consider the cumulative density function (CDF) y = F(x),  showed in 
the figure below

For this particular 
F(x), if u = 0.7 is 
generated
then F-1(0.7) is 6.8
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Inverse transform method

• A method to generate random number from a particular distribution is 
the inverse transform method

• In general, if you want to generate random numbers with cumulative 
density function (CDF) F(x) = Prob[X ≤ x], you can use the following 
procedure:
• Generate a number u which is uniformly distributed in (0,1)
• Compute the number F-1(u)

• Example: Let us apply the inverse transform method to the 
exponential distribution
• CDF is 1 - exp(- λx) 
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Generating exponential distribution

• Given a sequence {U1, U2, U3, …} which is uniformly distributed in (0,1)
• The sequence - log(1 - Uk)/ λ is exponentially distributed with rate λ

• (Matlab file hist_expon.m)
1. Generate 10,000 

uniformly distributed 
numbers in (0,1) 

2. Compute -log(1-uk)/2 
where uk are the numbers 
generated in Step 1

3. The plot shows 
1. The  histogram of the 

numbers generated in 
Step 2 in 50 bins

2. The red line show the 
expected number of 
exponential distributed 
numbers in each bin
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Putting everything together

• We know how to write a discrete event simulation program 
to simulate a single-server queue with infinite buffer

• We know how to generate random numbers
• This will allow us to simulate a G/G/1 queue provided that 

we can generate the probability distribution
• In order to test how well our discrete event simulation 

program works, we will use it to simulate an M/M/1 queue 
and compare it with the expected result

• An M/M/1 simulation program (based on Matlab) is given in 
sim_mm1.m (available on the course web site)



Reproducible simulation

• We run the simulation sim_mm1.m a few times, we get mean 
response times of 0.98623, 0.98445, 1.0034, …

• Each simulation run gives a different result because different 
set of random numbers is used 

• In order to realise reproducibility of results, you can save the 
setting of the random number generator before simulation. If 
you reuse the setting later, you can reproduce the result
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% obtain setting and save it in a file 
rand_setting = rng;
save saved_rand_setting rand_setting
sim_mm1

% load the save setting and apply it 
load saved_rand_setting
rng(rand_setting)
sim_mm1
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References

• Discrete event simulation of single-server queue
• Winston, “Operations Research”, Sections 23.1-23.2
• Law and Kelton, “Simulation modelling and analysis”, Section 1.4

• Generation of random numbers
• Raj Jain, “The Art of Computer Systems Performance Analysis”

• Sections 26.1 and 26.2 on LCG
• Section 28.1 on the inverse transform methods   

• Note: We have only touched on the basic of discrete event 
simulations. For a more complete treatment, see
• Law and Kelton, “Simulation modelling and analysis”
• Harry Perros, “Computer Simulation Techniques: The definitive 

introduction”, an e-book that can be downloaded from
• http://www4.ncsu.edu/~hp/files/simulation.pdf


