
COMP9334 1

COMP9334
Capacity Planning for Computer Systems
and Networks

Week 7: Discrete event simulation (1)

COMP9334 2

Week 3: Queues with Poisson arrivals

• Multi-server M/M/m
1

2

m

m servers

Arrivals

Departures

Exponential inter-arrivals (λ)
Exponential service time (µ)

• Single-server M/M/1 Arrivals Departures
Exponential inter-arrivals (λ)
Exponential service time (µ)

COMP9334 3

Week 4: Closed-queueing networks

• Analyse closed-queueing network with Markov chain
• The transition between states is caused by an arrival or a

departure according to exponential distribution

CPU

Disk

• General procedure
• Identify the states
• Find the state transition rates
• Set up the balance equations
• Solve for the steady state

probabilities
• Find the response time etc.

COMP9334 4

Week 5: Queues with general arrival & service time

• Queues with general inter-arrival and service time distributions

Arrivals DeparturesGeneral Inter-arrivals time distribution
General service time distribution

• M/G/1 queue
• Can calculate delay with the P-K

formula

• G/G/1 queue
• No explicit formula, get a bound or

approximation

COMP9334 5

Analytical methods for queues

• You had learnt how to solve a number of queues
analytically (= mathematically) given their
• Inter-arrival time probability distribution
• Service time probability distribution

• Queues that you can solve now include M/M/1, M/M/m,
M/G/1, M/G/1 with priorities etc.
• If you know the analytical solution, this is often the most

straightforwad way to solve a queueing problem
• Unfortunately, many queueing problems are still

analytically intractable!

• What can you do if we have an analytically intractable
queueing problem?

COMP9334 6

This lecture and next lecture

• The lectures for these two weeks will focus on using
discrete event simulation for queueing problems
• Simulation is an imitation of the operation of real-life system over

time.

• The topics for this week are
• What are discrete event simulation?
• How to structure a discrete event simulation?
• How to generate pseudo-random numbers for simulation?

• Next week
• How to choose simulation parameters?
• How to analyse data?
• What are the pitfalls that you need to avoid?

COMP9334 7

Motivating example

• Consider a single-server queue
with only one buffer space (=
waiting room)

• If a customer arrives when the
buffer is occupied, the customer is
rejected.

• Given the arrival times and service
times in the table on the right, find
• The mean response time
• % of rejected customers
Assuming an idle server at time = 0.

Arrivals Departures
Customer
number

Arrival
time

Service
time

1 3 4
2 8 3
3 9 4
4 17 6
5 18 3
6 19 2
7 20 2
8 25 3
9 27 2

COMP9334 8

Let us try a graphical solution

• In the graphical solution, we will keep track of
• The status of the server: busy or idle
• The status of the buffer: occupied or vacant

Arrival pattern

3 8 9 17 18 19 20 25 27

(1) (2)(3) (4)(5)(6)(7) (8)(9)

time

Customer # is enclosed within ()

Server status

time

busy

idle

COMP9334 9

A graphical solution

Arrival pattern

Server status

3 8 9 17 18 19 20 25 27

Departure from
Server /
Reject

(1)

(1) (2)

(1)

(2)

(2)

(3)

(3)

(3)

(4)(5)(6)(7) (8)(9)

(3)

(4)

(5)

(6)(7) (4)

(5)

(5)

(8)

(8)

(8)

7 11 15 23 26 29

(9)

(9)

(9)

31

busy

idle

Buffer status
occupied

vacant

COMP9334 10

Using the graphical solution (1)

Arrival pattern

3 8 9 17 18 19 20 25 27

Departure from
Server /
Reject

(1)

(1) (2)

(2)(3) (4)(5)(6)(7) (8)(9)

(3) (6)(7) (4) (5) (8)

7 11 15 23 26 29

(9)

31

We can find
the response
time of each
customer &
average
response
time

COMP9334 11

Using the graphical solution (2)

Server status

Departure from
Server /
Reject

(1) (2)

(1) (2) (3)

(3)

(4)

(6)(7) (4)

(5)

(5)

(8)

(8)

7 11 15 23 26 29

(9)

(9)

31

busy

idle

We can find the server utilisation

We can find % of rejected customers

COMP9334 12

From graphical solution to computer solution (1)

• How can we turn this graphical solution into a computer
solution, i.e. a computer program that can solve the
problem for us

• We need to keep track of the status of the server and the
status of the buffer,
• This allows us to make decisions
• E.g. If server is BUSY and buffer is OCCUIPIED, an arriving

customer is rejected.
• E.g. If server is BUSY and buffer is VACANT, an arriving customer

goes to the buffer.
• E.g. If server is IDLE, an arriving customer goes to the sever

• What this means: We need to keep track of the status of
some variables in our computer solution.

COMP9334 13

From graphical solution to computer solution (2)

• Observation #1:
• An arriving or departing customer

causes the server or buffer status
to change

• Examples:
• At time = 3, the arrival of

customer #1 causes the server
to switch from IDLE to BUSY

• At time = 7, the departure of
customer #1 causes the server
to switch from BUSY to IDLE

• At time = 9, the arrival of
customer #3 causes the buffer to
switch from VACANT to
OCCUPIED

• Etc.

3 8 9

(1)

(1) (2)

(1)

(2)

(2)

(3)

(3)

(3)

(3)

7 11 15

busy

idle

occupied

vacant

COMP9334 14

From graphical solution to computer solution (3)

• Let us call the arrival of a
customer or the departure of a
customer an event

• Observation #2:
• The status of the server and the

status of the buffer remain the
same between two consecutive
events

• What this means:
• We need to keep track of the

timing of the events
• Events can cause status

transitions
• In between events, status

remain the same

3 8 9

(1)

(1) (2)

(1)

(2)

(2)

(3)

(3)

(3)

(3)

7 11 15

busy

idle

occupied

vacant

COMP9334 15

From graphical solution to computer solution (4)

• In our computer solution, we will use a master clock to
keep track of the current time

• We will advance the master clock from event to event
• In order to see how the computer solution works, let us try

it out on paper first

COMP9334 16

On paper simulation
• In our simulation, we keep track of a number of variables

• MC = Master clock
• Status of

• Server: 1 = BUSY, 0 = IDLE
• Buffer: 1 = OCCUPIED, 0 = VACANT

• Event time:
• Next arrival event and service time of this arrival
• Next departure event and arrival time of this departure

• The (arrival time, service time) of the customer in buffer
• In order to compute the response time, we keep track of

• The cumulative response time (T)
• Cumulative number of customers rejected (R)

MC Next arrival Next departure Server
status

Buffer
status
+ customer
in buffer

T R
Arrival
time

Service
time

Departure
time

Arrival time of this
departure

0 3 4 - - 0 0 0 0
3 8 3 7 3 1 0 0 0
7 8 3 - - 0 0 4 0

COMP9334 17

On paper simulation

MC Next arrival Next departure Server
status

Buffer
status +
Customer
in buffer

T R
Arrival
time

Service
time

Departure
time

Arrival time of this
departure

0 3 4 - - 0 0 0 0
3 8 3 7 3 1 0 0 0
7 8 3 - - 0 0 4 0
8 9 4 11 8 1 0 4 0
9 17 6 11 8 1 1

(9,4)
4 0

11 17 6 15 9 1 0 7 0
15 17 6 - - 0 0 13 0
Can you continue?

(Arrival time, service time) of the
customer in the buffer.

COMP9334 18

Logic of the program (1)

Find next event

Advance master clock to the next
event

Take appropriate action depending on
type of event

• At each step, we advance to the next event that will take
place

COMP9334 19

Arrival event

Server IDLE
(Buffer VACANT)

Server BUSY
Buffer VACANT

Server BUSY
Buffer OCCUPIED

Handling an arrival event

• Add a departure event
with departure time =
current time + service
time of the arrival

• Change server status to
BUSY

• Change buffer status
to OCCUPIED

• Store the arrival time
and service time of
this arrival with buffer
information

• Reject this
customer

• Increment the
cumulative number
of rejected
customers by one

• Look up the list of arrival to fill in the information for the next arrival
event

Three cases according
to the server and/or
buffer status

COMP9334 20

Departure event

Buffer VACANT Buffer OCCUPIED

Handling an departure event

• Change server status to
IDLE

• Next departure event
becomes empty

• Update the departure event with
information of the customer in the buffer

• Next departure time =
current time + service time of the
customer in the buffer

• Change buffer status to VACANT

• Update the cumulative response time
• T ç T + current time - arrival time of the departing customer

Two cases according to
the buffer status

COMP9334 21

Discrete event simulation

• The above computer program is an example of a discrete
event simulation

• It allows you to solve a queueing problem with one server
and one buffer space

• You can generalise the above procedure to
• Multi-server
• Finite or infinite buffer space
• Different queueing disciplines

• Let us generalise it to the case of single-server with infinite
buffer

COMP9334 22

Single server with infinite buffer simulation

• In this case, we will use buffer status to denote the number
of customers in buffer
• Buffer status = 0, 1, 2, 3, …

• We also need to store all the (arrival time, service time) of
all the customers in the buffer

• Compare with the single-server single-buffer case, we only
need to change the handling of
• An arrival event
• A departing event

COMP9334 23

Arrival event

Server IDLE Server BUSY

Handling an arrival event

• Add a departure event with
departure time = current time +
service time of the arrival

• Change server status to BUSY

• Increment number of customers
in the buffer by 1

• Store the arrival time and
service time of this arrival with
buffer information

• Look up the list of arrival to fill in the information for the next arrival

Two cases according to
the server status

COMP9334 24

Departure event

Buffer = 0 Buffer ≠ 0

Handling an departure event

• Change server status to
IDLE

• Departure event
becomes empty

• Update the departure event with first
customer in the buffer

• Next departure time =
current time + service time of the first
customer in the buffer

• Delete first customer from buffer
• Decrement number of customers in the

buffer by 1

• Update the cumulative response time
• T ç T + current time - arrival time of the departing customer

Two cases according to
the buffer status

COMP9334 25

Generating random numbers

• We have so far assume that you can look up a list of arrival
times and service times for the next customer

• However, sometimes you want to solve a queue with some
specific inter-arrival time and service time probability
distribution
• For example, if

• inter-arrival time x is drawn from 1/x2 with x ≥ 1
• Service time y is drawn from 2/y3 with y ≥ 1

• In this case, you will need to generate random numbers with the
given probability distribution

• We will now study how we can generate random numbers

COMP9334 26

Random number generator in C

• In C, the function rand() generates random integers
between 0 and RAND_MAX

• E.g. The following program generates 10 random integers:

#include <stdio.h>
#include <stdlib.h>

int main ()
{

int i;

for (i = 0; i < 10; i++)
printf("%d\n",rand());

return;

}

Let us generate 10,000 random
integers using rand() and see
how they are distributed

This C file “genrand1.c” is available
from the course web site.

COMP9334 27

Distribution of 10000 entries from rand()

Sort into 50 bins

If the numbers
are really
uniformly
distributed, we
expect 200
numbers
in each bin.

The numbers are
almost uniformly
distributed

COMP9334 28

LCG

• The random number generator in C is a Linear Congruential Generator
(LCG)

• LCG generates a sequence of integers {Z1, Z2, Z3, …} according to the
recursion

Zk = a Zk-1 + c (mod m)
where a, c and m are integers

• By choosing a, c, m, Z1 appropriately, we can obtain a sequence of
seemingly random integers

• If a = 3, c = 0, m = 5, Z1 = 1, LCG generates the sequence 1, 3, 4, 2, 1,
3, 4, 2, …

• Fact: The sequence generated by LCG has a cycle of m-1
• We must choose m to be a large integer

• For C, m = 231

• The proper name for the numbers generated is pseudo-random
numbers

COMP9334 29

Seed

• LCG generates a sequence of integers {Z1, Z2, Z3, …} according to the
recursion

Zk = a Zk-1 + c (mod m)
where a, c and m are integers

• The term Z1 is call a seed
• By default, C also uses 1 as the seed and it will generate the same

random sequence
• However, sometimes you need to generate different random

sequences and you can change the seed by calling the function srand()
before using rand()
• Demo genrand1.c, genrand2.c and genrand3.m
• genrand1.c – uses the default seed
• genrand2.c – sets the seed using command line argument
• genrand3.c – sets the seed using current time

COMP9334 30

Uniformly distributed random numbers between (0,1)

• With rand() in C, you can generate uniformly distributed
random numbers in between 1 and 231-1(= RAND_MAX)
• By dividing the numbers by RAND_MAX, you get randomly

distributed numbers in (0,1)

• In Matlab, rand(n,1) generates a sequence of n uniformly
distributed random numbers in (0,1)
• Matlab uses the Mersenne Twister random number generator with

a period of 219937 - 1
• If you use 109 random number in a second, the sequence will only

repeat after 105985 years

• Why are uniformly distributed random numbers important?
• If you can generate uniformly distributed random numbers between

(0,1), you can generate random numbers for any probability
distribution

Fair coin distribution

• You can generate random numbers between 0 and 1
• You want to use these random numbers to imitate fair coin

tossing, i.e.
• Probability of HEAD = 0.6
• Probability of TAIL = 0.4

• You can do this using the following algorithm
• Generate a random number u
• If u < 0.6, output HEAD
• If u ≥ 0.6, output TAIL

COMP9334 31

A loaded dice

• You want to create a loaded dice with probability mass function

COMP9334 32

• The algorithm is:
• Generate a random number u

0.1

0.2

0.3

• If u < 0.1, output 1
• If 0.1 ≤ u < 0.3, output 2
• If 0.3 ≤ u < 0.4, output 3

• If 0.4 ≤ u < 0.7, output 4
• If 0.7 ≤ u < 0.8, output 5
• If 0.8 ≤ u , output 6

1 2 3 4 5 6

Cumulative probability distribution

COMP9334

0.1
0.2
0.3

1 2 3 4 5 6
Probability that the dice gives a value ≤ x

x
21 3 4 5 6

0.1
0.3
0.4
0.7
0.8
1Ex: Can you

work out what
these levels
should be

33

Comparing algorithm with cumulative distribution

COMP9334 34

• The algorithm is:
• Generate a random number u
• If u < 0.1, output 1
• If 0.1 ≤ u < 0.3, output 2
• If 0.3 ≤ u < 0.4, output 3

• If 0.4 ≤ u < 0.7, output 4
• If 0.7 ≤ u < 0.8, output 5
• If 0.8 ≤ u , output 6

Probability that the dice gives a value ≤ x

x
21 3 4 5 6

0.1
0.3
0.4
0.7
0.8
1Ex: What do

you notice
about the
intervals in
the algorithm
and the
cumulative
distribution?

Graphical interpretation of the algorithm

COMP9334 35

• The algorithm is:
• Generate a random number u
• If u < 0.1, output 1
• If 0.1 ≤ u < 0.3, output 2
• If 0.3 ≤ u < 0.4, output 3

• If 0.4 ≤ u < 0.7, output 4
• If 0.7 ≤ u < 0.8, output 5
• If 0.8 ≤ u , output 6

Probability that the dice gives a value ≤ x

x
21 3 4 5 6

0.1
0.3
0.4
0.7
0.8
1Ex: Let us

assume
u = 0.5126,
what should
the algorithm
output?

Output 4

COMP9334 36

Graphical representation of inverse transform method

• Consider the cumulative density function (CDF) y = F(x), showed in
the figure below

For this particular
F(x), if u = 0.7 is
generated
then F-1(0.7) is 6.8

COMP9334 37

Inverse transform method

• A method to generate random number from a particular distribution is
the inverse transform method

• In general, if you want to generate random numbers with cumulative
density function (CDF) F(x) = Prob[X ≤ x], you can use the following
procedure:
• Generate a number u which is uniformly distributed in (0,1)
• Compute the number F-1(u)

• Example: Let us apply the inverse transform method to the
exponential distribution
• CDF is 1 - exp(- λx)

COMP9334 38

Generating exponential distribution

• Given a sequence {U1, U2, U3, …} which is uniformly distributed in (0,1)
• The sequence - log(1 - Uk)/ λ is exponentially distributed with rate λ

• (Matlab file hist_expon.m)
1. Generate 10,000

uniformly distributed
numbers in (0,1)

2. Compute -log(1-uk)/2
where uk are the numbers
generated in Step 1

3. The plot shows
1. The histogram of the

numbers generated in
Step 2 in 50 bins

2. The red line show the
expected number of
exponential distributed
numbers in each bin

COMP9334 39

Putting everything together

• We know how to write a discrete event simulation program
to simulate a single-server queue with infinite buffer

• We know how to generate random numbers
• This will allow us to simulate a G/G/1 queue provided that

we can generate the probability distribution
• In order to test how well our discrete event simulation

program works, we will use it to simulate an M/M/1 queue
and compare it with the expected result

• An M/M/1 simulation program (based on Matlab) is given in
sim_mm1.m (available on the course web site)

Reproducible simulation

• We run the simulation sim_mm1.m a few times, we get mean
response times of 0.98623, 0.98445, 1.0034, …

• Each simulation run gives a different result because different
set of random numbers is used

• In order to realise reproducibility of results, you can save the
setting of the random number generator before simulation. If
you reuse the setting later, you can reproduce the result

COMP9334 40

% obtain setting and save it in a file
rand_setting = rng;
save saved_rand_setting rand_setting
sim_mm1

% load the save setting and apply it
load saved_rand_setting
rng(rand_setting)
sim_mm1

COMP9334 41

References

• Discrete event simulation of single-server queue
• Winston, “Operations Research”, Sections 23.1-23.2
• Law and Kelton, “Simulation modelling and analysis”, Section 1.4

• Generation of random numbers
• Raj Jain, “The Art of Computer Systems Performance Analysis”

• Sections 26.1 and 26.2 on LCG
• Section 28.1 on the inverse transform methods

• Note: We have only touched on the basic of discrete event
simulations. For a more complete treatment, see
• Law and Kelton, “Simulation modelling and analysis”
• Harry Perros, “Computer Simulation Techniques: The definitive

introduction”, an e-book that can be downloaded from
• http://www4.ncsu.edu/~hp/files/simulation.pdf

