COMP9334 Capacity Planning of Computer Systems and Networks

Week 1: Introduction to Capacity Planning

Chun Tung Chou

About your lecturer

- Research in Computer Networks and Embedded Systems
- Example research projects
 - Derive efficient algorithms for embedded devices
 - Enabling biological computers to talk to each other
 - Enabling nano-scale devices to talk to each other
- Tools I use in my research
 - Measurements
 - Mathematical analysis
 - Simulation
 - Program and test

Course organisation

- Course web site: www.cse.unsw.edu.au/~cs9334
- Email: cs9334@cse.unsw.edu.au
- Read the course outline
- Lectures and Tutorials: Fri 10-1, ElecEng G25
 - Either
 - 3-hour lecture
 - 2-hour lecture + 1-hour tutorial

Course objective:

- Aim: The design of computer systems and networks to meet performance specifications
- Example problem: You want to design a computer system that can deal with 400,000 HTTP hits per minutes. How can you make sure that your system will meet this demand?
- You will learn how to solve capacity planning problems using mathematical modelling.

How to learn?

- Lectures
 - Key concepts, illustration by small examples
 - Don't just depend the lecture notes, you must
- Read the reference materials too
- Revision problems
 - Try if you can solve the problem
- Try also the exercises in the book
- Use discussion board
 - Don't think your question is silly, other may have the same problem
- The key is understanding, not memorisation
- Mathematics is something that you can get used to

Resources

- Books and reference materials
 - We will use materials from a number of books
 - Available in library as hard copy or electronically
- Two key books:
 - Menasce et al. Performance by Design. PH. 2004 (Hard copy)
 - Harchol-Balter. Performance Modelling and Design of Computer Systems. CUP, 2013. (Electronic)
- On-line resources
 - Journal and conference articles
 - IEEE and ACM
- Solving mathematical problems
 - Polya, "How to solve it?" (Highly recommended)

Assessment

- Three assessment components
 - Assignments 1 and 2 (15%)
 - Project (20%)
 - Final exam (open book, no laptop/tablet) (65%)
- Assignments 1 and 2: Extended tutorial questions
- Project: Simulation (coding + statistics)
- Overall mark:
 - C = Assignments + Project -> Rescale C to be out of 100
 - E = Exam mark -> Rescale E to be out of 100
 - Overall mark = weighted harmonic mean of C and E
 - 1 / (0.65/E + 0.35/C)
 - Implication of harmonic mean

S1, 2016 COMP9334

Special arrangements

- Friday of Week 4, 25 March. Good Friday. No lectures.
- Friday of Session Break (1 April). 10am-1pm. Make-up lecture in ElecEng G25
- Friday of Week 6, 15 April. Lecturer is away. No lectures.

Assumed knowledge

- Mathematics
 - Probability
 - Probability density function, independence, conditional probability
 - Statistics
 - Vectors and matrices, linear equations
 - Differentiation and integration
- A good review of probability is in Chapter 3 of Harcol-Balter, "Performance Modeling and Design of Computer Systems"

A quick test on probability

- Probability is fun and very useful, but is sometimes tricky
- Can you figure out what mistake Prof. Sheldon Cooper (Big Bang Theory) made in the following clip?
- https://www.youtube.com/watch?v=bjUwSHGsG9o

 Sheldon's reply on why he thought the person's name should be Mohammed Li. "Mohammed is the most common first name in the world. Li the most common surname. As I didn't know the answer, I though that gave me a mathematical edge."

Lecture outline

- Capacity planning
 - Why?
 - What?
- Quality of service metrics
- Quantitative performance analysis ←→ Capacity Planning
- What techniques you will learn
- More quality of service metrics
- Queueing models
 - Queues → Waiting time

Hot eBusiness News

Poor Web Site Performance Is Costing Retailers Millions

Hot eBusiness News

Poor Web Site Performance Is Costing Retailers Millions

- The aim of capacity planning is to improve performance of computer systems by adding "capacity".
- What is performance?
- What is capacity?

Design of an e-Commerce systems

- Functional requirements
 - Product search, database management functions etc
 - Search correctness, algorithmic efficiency
- Computer and network security
- System performance
 - E.g. Can the computer system return database search within 20ms if there are 500 search queries per second?

performance

• If not, should we buy more servers? How many?

Work load

capacity

Can you think of other system performance requirements?

Web search engine

 Say you are planning a computer system which will host a search engine that rivals Google

performance

- Current expected workload
 - 1000 searches per second
- Performance specification.
 - Return results within 10ms
- What hardware_and network should you use?
 - How many servers? How much disk space? Etc.
- What if workload is expected to increase by 50% in one year, can the system still maintain its performance?

Question: Can you think of other capacity parameters?

Capacity planning problems

- Focused on capacity planning of computer systems and networks
- Elements of a capacity planning problems
 - Given:
 - Workload specifications
 - Performance specifications
 - Find:
 - Capacity e.g. hardware or network requirements, personnel requirements etc.

Capacity planning motivations

- Importance of performance
 - Can be life and death
 - Availability of critical infrastructure e.g. emergency services
 - Customer satisfaction
 - Availability
 - Response time
- The italicised terms are examples of computer system related performance metrics
 - Also known as Quality of service (QoS) metrics

Response time

- Response time
 - What is it? (Next slide)
 - Possible performance specifications
 - Mean response time is less than 1 s when no more than 5000 requests arrive per second
 - 95% of the requests are completed within 1s when no more than 5000 requests arrive / s
 - Note: Workload characteristics are also part of the performance specification

Response time of a system

Response time = t2 - t1.

Measured in seconds. Can be expressed as mean, standard deviation, probability distribution etc.

Availability

- Fraction of time the system is up and useable by users
 - Ex: It is common for Internet Service Providers (ISP) to sign Service Level Agreement (SLA) with their commercial customers.
 One ISP guarantees that its network outage is less than 6 hours per 30 days. The network availability is 1 - 6/(30*24) = 99.17%

Lecture outline

- Capacity planning
 - Why?
 - What?
- Quality of service metrics
- Quantitative performance analysis ←→ Capacity Planning
- What techniques you will learn
- More quality of service metrics
- Queueing models
 - Queues → Waiting time

Capacity Planning -> Performance analysis

- Capacity planning question:
 - A web server needs to complete an HTTP request within 20ms when there are 500 HTTP requests per second, what CPU speed do you need?
- Let us turn the capacity planning question into a performance analysis question
- Performance analysis question:
 - If the web server has a CPU with x MIPS, what is the response time when there are 500 HTTP requests per second?
- If you can solve the performance analysis question for any value of x, you can also solve the capacity planning question

Three performance analysis strategies

- Build the system and perform measurement
- Simulation
- Mathematical modelling
- This course will look at
 - Quantitative methods to determine the QoS metrics of computer systems using
 - Queueing networks
 - Markov chains
 - Using simulation to study performance
 - Optimisation methods such as linear and integer programming

Ex. 1: Database server

- A database server has a CPU and 2 disks (Disk1 and Disk2)
- The response time is 10s for each query. How can we improve it?
 - Change the CPU? To what speed?
 - Add a CPU? What speed?
 - Add a new disk? What to move there?
- Technique: Queueing networks

Ex 2: Composite web services

Figure 1. A composite Web service. After an initialization step S_0 , N Web services are invoked in parallel. Service N takes longer than the others, and the final step S_f can only be carried out after all N services have completed.

- Aim: Determine response time
- Queueing networks with fork-join

Picture: IEEE Internet Computing Feb 2004

Ex. 3: Server farm power allocation

- A server farm consists of multiple servers
- The servers can run at
 - Higher clock speed with higher power
 - Lower clock speed with lower power
- Ex: Given
 - Higher power = 250W, lower power = 150W
 - Power budget = 3000W
 - You can have
 - 12 servers at highest clock speed
 - 20 servers at lowest clock speed
 - Other combinations
 - Which combination is best?
- Queueing theory

Ex 4: Internet data centre availability

- Distributed data centres
- Availability problem:
 - Each data center may go down
 - Mean time between going down is 90 days
 - Mean repair time is 6 hours
 - Can I maintain 99.9999% availability for 3 out of 4 centres
- Technique: Markov Chain

Ex 5: Network expansion

 You would like to add communication links to a network. The design questions are: Where to add? How much capacity?

Technique: Integer programming

Why probability?

- The mathematical methods that we are going to study are based on probability theory. Why probability?
- Let us say 500 HTTP requests arrive at the web server in one second
- A deterministic world will mean
 - An HTTP request arrives every 2ms

• But the arrival pattern is not deterministic, it's random

Lecture outline

- Capacity planning
 - Why?
 - What?
- Quality of service metrics
- Quantitative performance analysis ←→ Capacity Planning
- What techniques you will learn
- More quality of service metrics
- Queueing models
 - Queues → Waiting time

QoS metrics

- We have seen 2 QoS metrics
 - Response time
 - Availability
- More QoS metrics
 - Throughput
 - Reliability
 - Scalability

Throughput (1)

- The rate at which requests are completed
- Ex: For network routers, throughput can be measured in
 - Packets per second (pps)
 - Ex: 10 Mpps for 40-byte packets
 - Note: Should specify packet size
 - Mb/s
- Other throughput measures
 - Web site: HTTP requests/s, bytes/s
 - CPU: MIPS, FLOPS

Throughput (2)

- Throughput is a function of the load
 - A disk takes 0.01s to perform an I/O operation
 - Maximum number of I/O operation per s = 100
 - If 50 I/O operations arrive per second, the throughput = 50 I/O opertions/s
 - If 110 I/O operations arrive per second, the throughput = 100 I/O operations
 - Throughput = min(offered load, max capacity)

Thrasing = congestion collapse

Throughput (4)

- Performance evaluation can be used to determine the maximum throughput of computer systems
 - Example: bottleneck analysis
 - Topic for next week

Reliability

- The probability that a system will function
- Possible metrics are
 - Mean-time-to-failure (MTTF)
 - The mean time between two system failures
 - Probability of system failure at any time
- Related metric
 - Mean-time-to-repair (MTTR)

Scalability

How fast does performance degrade with increasing load or users?

Which system is more scalable?

Lecture outline

- Capacity planning
 - Why?
 - What?
- Quality of service metrics
- Quantitative performance analysis ←→ Capacity Planning
- What techniques you will learn
- More quality of service metrics
- Queueing models
 - Queues → Waiting time

Quantitative performance analysis (3)

- Sample performance analysis question:
 - If the web server has a CPU with x MIPS, what is the response time when there are 500 HTTP requests per second?
- Performance analysis question:
 - Given:
 - A computer system with a certain capacity
 - The workload
 - Find
 - The performance (response time, throughput etc) of the system
- Our method is:
 - Build analytical models of computer systems
- An important part of the analytical model is "queue"
 - You can surely relate "queues" to "waiting time"

Single server FIFO queue

- Queueing Theory terminologies
 - Server: Processing unit
 - FIFO: First-in first-out
 - Work conserving server
 - The server cannot be idle when there are jobs waiting to be processed in the queue
- Ex: Shop with only one checkout counter
- The server is a resource
 - Queues result from resource contention
- Main concern: response time

Job index	Arrival time	Processing time required	
1	2	2	
2	6	4	
3	8	4	
4	9	3	

Assumption: server is idle when job #1 arrives

Job #1 is admitted into the server immediately since the server is idle.

Job #1 is completed and leaves the system at time 4.

Job index	Arrival time	Processing time required	
1	2	2	
2	6	4	
3	8	4	
4	9	3	

Job #2 arrives when the server is idle. It gets admitted immediately.

Job #2 will be completed at time 10.

Job index	Arrival time	Processing time required	
1	2	2	
2	6	4	
3	8	4	
4	9	3	

Job #3 arrives when Job #2 is being served i.e. the server is busy. Job #3 has to wait in the queue.

Server starts processing Job #3 immediately after finishing Job #2.

Job index	Arrival time	Processing time required	
1	2	2	
2	6	4	
3	8	4	
4	9	3	

Job #4 arrives when the server is processing Job#2 and Job#3 is in the queue. Job #4 joins the queue. It gets served at time 14, immediately after Job#3 is completed.

Job index	Arrival time	Processing time required	
1	2	2	
2	6	4	
3	8	4	
4	9	3	

- Definition: Response time = Departure time arrival time Ex: Response time for Job#4 = 8
- Response time = Waiting time + Processing time

Job index	Arrival time	Processing time required
1	2	2
2	6	4
3	8	4
4	9	3

- Definition: Utilisation = Percentage of time over which the server is busy
- •What is the utilisation of the server over the first 12s?
 - \bullet 8/12 = 66.7%

S1, 2016

Single server FIFO queues

- Can be used to model
 - Shop with only one checkout counter
 - A single processor processing jobs in FIFO order
 - A disk processing job in FIFO order
- Model
 - An abstraction of the real system
 - Need to capture enough details to meet our analysis requirements

What if both inter-arrival time and processing time are determinisitic?

Job index	Arrival time	Processing time required	
1	2	1	
2	4	1	
3	6	1	
4	8	1	

What is the waiting time for each job? What is the response time for each job?

COMP9334 S1, 2016 48

Determining response time

- Generally we need to know
 - The arrival pattern
 - Ex: The arrival rate
 - Ex: The inter-arrival time statistical distribution
 - The service time distribution
 - The time required to process the job
- Since we are interested in response time, our models capture the time related aspects of the real systems e.g. queueing, processing units
- We will learn different methods to determine response time in this course

Service time

- Time require to process a request at a resource
 - Ex: The service time to send a 1000 byte packet over a 10 kbps link is 0.8s. In this case,
 - Service time = packet size / transmission rate
 - Ex: The service time for a get a X byte large file from a disk is
 - Seek time + X / transfer rate
 - For a class of resources, we have
 - Service time = Overhead + Job size / Processing rate

Response time of M/M/1 queue (1)

- M/M/1 queue
 - A type of single server queue characterised by
 - Average arrival rate of jobs is λ
 - Average service demand per job is $1/\mu$
 - μ is the processing rate
 - Inter-arrival time and service demand are drawn from exponential distribution
 - Queueing theory shows that the mean response time for M/M/1 queue is 1 / $(\mu \lambda)$ if $\mu > \lambda$

Response time of M/M/1 queue (2)

- Example:
 - Current system:
 - Mean arrival rate λ is 2 requests/s
 - Mean service time $1/\mu = 0.2s \Rightarrow \mu = 5$
 - The response time = 1/(5-2) = 0.33s
 - What if arrival rate λ is doubled?
 - The new response time =
 - Nonlinear increase!
 - If the new response time is too big, what are your options assuming you still want the new customers?

Modelling computer systems

- Single server queue considers only a component within a computer system
- A request may require multiple resources
 - E.g. CPU, disk, network transmission
- We model a computer systems with multiple resources by a Queueing Networks (QNs)

Pictorial representation of single server queues

Pictorial representation of queues

Systems with *m* servers

A simple database server

The server has a CPU and a disk.

A transaction may visit the CPU and disk multiple times.

Multi-class DB example

- Why multi-class?
 - Heterogeneity in service demands, workloads and service level objectives
 - Lumping into one single class may give inaccurate performance prediction

transaction group	•	avg. CPU time (sec)	avg. no. I/Os
Trivial	45%	0.04	5.5
Medium	25%	0.18	28.9
Complex	30%	1.20	85

Multi-class traffic - exercise

- Consider a web server which
 - Stores frequently accessed pages in memory cache
 - Fetches other pages from the backend server
- How will you characterise these two service classes?

DB servers for batch jobs

- Example: Batch processing system
 - For summarising transactions only
 - No on-line transactions

Open vs. closed queueing networks (1)

Open queueing network

- External arrivals
- Workload intensity specified by arrival rate

Closed queueing network

- No external arrivals
- Workload intensity specified by customer population

Open vs. closed queueing networks (2)

Open queueing network

- Unbouned #customers
- For stable equilibrium
 Throughput = arrival
 rate

Closed queueing network

- Known #customers
- Throughput depends on # customers etc.

Open vs. closed queueing networks - Terminology

Work in closed queueing network is called transaction

Work in closed queueing network is called jobs

DB server - mixed model

- The server has both
 - External transactions
 - Batch jobs

Different techniques are needed to analyse open and closed queueing networks

DB server – Multi-programming level

- Some database server management systems (DBMS) set an upper limit on the number of active transactions within the incoming system
- This upper limit is called multiprogramming level (MPL)

Figure 1. Simplified view of the mechanism used in external scheduling. A fixed limited number of transactions (MPL=4) are allowed into the DBMS simultaneously. The remaining transactions are held back in an external queue. Response time is the time from when a transaction arrives until it completes, including time spent queueing externally to the DBMS.

- A help page from SAP explaining MPL
- http://dcx.sap.com/1200/en/dbadmin_en12/running-s-3713576.html
- Picture from Schroder et al. "How to determine a good multiprogramming level for external scheduling"

COMP9334 S1, 2016 64

DB Server - Interactive systems

- Modelling client interaction
 - A client sends a job to the server
 - Upon receiving results from the server, the client goes into thinking mode and send a next job
- Model the client as a delay source with no waiting line.

Modelling LAN

- The interactive client connects to the DB server via an Ethernet (LAN)
 - The delay experience by a user in a LAN depends on the number of users (= load)
 - This is a load dependent resource
- The opposite of a load dependent resource is a load independent resource

DB server with interactive clients

Capacity planning in action

- Modelling
 - Computer Systems ---> Queueing Networks
- You will learn different techniques to analyse a number of different classes of queueing networks:
 - Open/closed single/multiple class
 - Operational Analysis & Bottleneck Analysis
 - The last two will be the topics for next week
- The QN model will allow you to do what-if analysis?
 - What if the arrival rate increases by 20%
 - The increase in arrival rate has increased response time by 10%.
 What if I change the disk to one that is 20% faster, will I have restored the original performance?

References

- Reading:
 - Menasce et al, Chapters 1 & 2
 - OR
 - Harcol-Balter. Chapters 1 & 2.
- Exercises:
 - Revision problems:
 - See course web site
 - You are expected to try these exercises. Solutions will be available on the web.