COMP9334
Capacity Planning of Computer Systems and Networks

Week 1: Introduction to Capacity Planning
Chun Tung Chou
About your lecturer

• Research in Computer Networks and Embedded Systems

• Example research projects
 • Derive efficient algorithms for embedded devices
 • Enabling biological computers to talk to each other
 • Enabling nano-scale devices to talk to each other

• Tools I use in my research
 • Measurements
 • Mathematical analysis
 • Simulation
 • Program and test

http://www.cse.unsw.edu.au/~ctchou/
Course organisation

- Course web site: www.cse.unsw.edu.au/~cs9334
- Email: cs9334@cse.unsw.edu.au
- Read the course outline
- Lectures and Tutorials: Fri 10-1, ElecEng G25
 - Either
 - 3-hour lecture
 - 2-hour lecture + 1-hour tutorial
Course objective:

• Aim: The *design* of computer systems and networks to meet performance specifications

• Example problem: You want to design a computer system that can deal with 400,000 HTTP hits per minutes. How can you make sure that your system will meet this demand?

• You will learn how to solve capacity planning problems using *mathematical modelling*.
How to learn?

• Lectures
 • Key concepts, illustration by small examples
 • Don’t just depend the lecture notes, you must
• Read the reference materials too
• Revision problems
 • Try if you can solve the problem
• Try also the exercises in the book
• Use discussion board
 • Don’t think your question is silly, other may have the same problem
• The key is understanding, not memorisation
• Mathematics is something that you can get used to
Resources

• Books and reference materials
 • We will use materials from a number of books
 • Available in library as hard copy or electronically

• Two key books:
 • Menasce et al. Performance by Design. PH. 2004 (Hard copy)

• On-line resources
 • Journal and conference articles
 • IEEE and ACM

• Solving mathematical problems
 • Polya, “How to solve it?” (Highly recommended)
Assessment

- Three assessment components
 - Assignments 1 and 2 (15%)
 - Project (20%)
 - Final exam (open book, no laptop/tablet) (65%)
- Assignments 1 and 2: Extended tutorial questions
- Project: Simulation (coding + statistics)
- Overall mark:
 - $C = \text{Assignments} + \text{Project}$ -> Rescale C to be out of 100
 - $E = \text{Exam mark}$ -> Rescale E to be out of 100
 - Overall mark = weighted harmonic mean of C and E
 - $1 / (0.65/E + 0.35/C)$
 - Implication of harmonic mean
Special arrangements

- Friday of Week 4, 25 March. Good Friday. No lectures.
- Friday of Session Break (1 April). 10am-1pm. Make-up lecture in ElecEng G25
- Friday of Week 6, 15 April. Lecturer is away. No lectures.
Assumed knowledge

• Mathematics
 • Probability
 • Probability density function, independence, conditional probability
 • Statistics
 • Vectors and matrices, linear equations
 • Differentiation and integration

• A good review of probability is in Chapter 3 of Harcol-Balter, “Performance Modeling and Design of Computer Systems”
A quick test on probability

• Probability is fun and very useful, but is sometimes tricky

• Can you figure out what mistake Prof. Sheldon Cooper (Big Bang Theory) made in the following clip?

• https://www.youtube.com/watch?v=bjUwSHGsG9o

• Sheldon’s reply on why he thought the person’s name should be Mohammed Li. “Mohammed is the most common first name in the world. Li the most common surname. As I didn’t know the answer, I though that gave me a mathematical edge.”
Lecture outline

- Capacity planning
 - Why?
 - What?
- Quality of service metrics
- Quantitative performance analysis ↔ Capacity Planning
- What techniques you will learn
- More quality of service metrics
- Queueing models
 - Queues ➔ Waiting time
Why capacity planning?

Hot eBusiness News

Poor Web Site Performance Is Costing Retailers Millions
Why capacity planning?

Hot eBusiness News

Poor Web Site Performance Is Costing Retailers Millions

- The aim of capacity planning is to improve *performance* of computer systems by adding "capacity".
- What is performance?
- What is capacity?
Design of an e-Commerce systems

• Functional requirements
 • Product search, database management functions etc
 • Search correctness, algorithmic efficiency
• Computer and network security
• System performance
 • E.g. Can the computer system return database search within 20ms if there are 500 search queries per second?
 • If not, should we buy more servers? How many?
• Can you think of other system performance requirements?
Web search engine

- Say you are planning a computer system which will host a search engine that rivals Google
- Current expected workload
 - 1000 searches per second
- Performance specification
 - Return results within 10ms
- What hardware and network should you use?
- What if workload is expected to increase by 50% in one year, can the system still maintain its performance?

- Question: Can you think of other capacity parameters?
Capacity planning problems

• Focused on capacity planning of computer systems and networks

• Elements of a capacity planning problems
 • Given:
 • Workload specifications
 • Performance specifications
 • Find:
 • Capacity e.g. hardware or network requirements, personnel requirements etc.
Capacity planning motivations

• Importance of performance
 • Can be life and death
 • Availability of critical infrastructure e.g. emergency services
 • Customer satisfaction
 • Availability
 • Response time

• The italicised terms are examples of computer system related performance metrics
 • Also known as Quality of service (QoS) metrics
Response time

- Response time
 - What is it? (Next slide)
 - Possible performance specifications
 - Mean response time is less than 1 s when no more than 5000 requests arrive per second
 - 95% of the requests are completed within 1s when no more than 5000 requests arrive / s
 - Note: Workload characteristics are also part of the performance specification
Response time of a system

Request arrives at time t_1

Request completes and leaves at time t_2

Response time $= t_2 - t_1$.
Measured in seconds. Can be expressed as mean, standard deviation, probability distribution etc.
Availability

• Fraction of time the system is up and useable by users
 • Ex: It is common for Internet Service Providers (ISP) to sign Service Level Agreement (SLA) with their commercial customers. One ISP guarantees that its network outage is less than 6 hours per 30 days. The network availability is 1 - 6/(30*24) = 99.17%
Lecture outline

• Capacity planning
 • Why?
 • What?
• Quality of service metrics
• Quantitative performance analysis ↔ Capacity Planning
• What techniques you will learn
• More quality of service metrics
• Queueing models
 • Queues © Waiting time
Capacity Planning ➔ Performance analysis

• Capacity planning question:
 • A web server needs to complete an HTTP request within 20ms when there are 500 HTTP requests per second, what CPU speed do you need?

• Let us turn the capacity planning question into a performance analysis question

• Performance analysis question:
 • If the web server has a CPU with x MIPS, what is the response time when there are 500 HTTP requests per second?

• If you can solve the performance analysis question for any value of x, you can also solve the capacity planning question
Three performance analysis strategies

• Build the system and perform measurement
• Simulation
• Mathematical modelling

This course will look at

• Quantitative methods to determine the QoS metrics of computer systems using
 • Queueing networks
 • Markov chains
• Using simulation to study performance
• Optimisation methods such as linear and integer programming
Ex. 1: Database server

• A database server has a CPU and 2 disks (Disk1 and Disk2)
• The response time is 10s for each query. How can we improve it?
 • Change the CPU? To what speed?
 • Add a CPU? What speed?
 • Add a new disk? What to move there?
• Technique: Queueing networks
Ex 2: Composite web services

Figure 1. A composite Web service. After an initialization step S_0, N Web services are invoked in parallel. Service N takes longer than the others, and the final step S_f can only be carried out after all N services have completed.

- **Aim:** Determine response time
- **Queueing networks with fork-join**

Picture: IEEE Internet Computing Feb 2004
Ex. 3: Server farm power allocation

• A server farm consists of multiple servers
• The servers can run at
 • Higher clock speed with higher power
 • Lower clock speed with lower power
• Ex: Given
 • Higher power = 250W, lower power = 150W
 • Power budget = 3000W
 • You can have
 • 12 servers at highest clock speed
 • 20 servers at lowest clock speed
 • Other combinations
 • Which combination is best?

• Queueing theory
Ex 4: Internet data centre availability

• Distributed data centres

• Availability problem:
 • Each data center may go down
 • Mean time between going down is 90 days
 • Mean repair time is 6 hours
 • Can I maintain 99.9999% availability for 3 out of 4 centres

• Technique: Markov Chain
Ex 5: Network expansion

- You would like to add communication links to a network. The design questions are: Where to add? How much capacity?
- Technique: Integer programming
Why probability?

- The mathematical methods that we are going to study are based on probability theory. Why probability?
- Let us say 500 HTTP requests arrive at the web server in one second
- A deterministic world will mean
 - An HTTP request arrives every 2ms
- But the arrival pattern is not deterministic, it’s random
Lecture outline

- Capacity planning
 - Why?
 - What?
- Quality of service metrics
- Quantitative performance analysis ↔ Capacity Planning
- What techniques you will learn
- More quality of service metrics
- Queueing models
 - Queues ➔ Waiting time
QoS metrics

• We have seen 2 QoS metrics
 • Response time
 • Availability

• More QoS metrics
 • Throughput
 • Reliability
 • Scalability
Throughput (1)

• The rate at which requests are completed
• Ex: For network routers, throughput can be measured in
 • Packets per second (pps)
 • Ex: 10 Mpps for 40-byte packets
 • Note: Should specify packet size
 • Mb/s
• Other throughput measures
 • Web site: HTTP requests/s, bytes/s
 • CPU: MIPS, FLOPS
Throughput (2)

- Throughput is a function of the load
 - A disk takes 0.01s to perform an I/O operation
 - Maximum number of I/O operation per s = 100
 - If 50 I/O operations arrive per second, the throughput = 50 I/O operations/s
 - If 110 I/O operations arrive per second, the throughput = 100 I/O operations
 - Throughput = min(offered load, max capacity)
Thrashing = congestion collapse
Throughput (4)

- Performance evaluation can be used to determine the maximum throughput of computer systems
 - Example: bottleneck analysis
 - Topic for next week
Reliability

• The probability that a system will function
• Possible metrics are
 • Mean-time-to-failure (MTTF)
 • The mean time between two system failures
 • Probability of system failure at any time
• Related metric
 • Mean-time-to-repair (MTTR)
Scalability

- How fast does performance degrade with increasing load or users?

Which system is more scalable?
Lecture outline

• Capacity planning
 • Why?
 • What?

• Quality of service metrics

• Quantitative performance analysis ↔ Capacity Planning

• What techniques you will learn

• More quality of service metrics

• Queueing models
 • Queues ⇒ Waiting time
Quantitative performance analysis (3)

• Sample performance analysis question:
 • If the web server has a CPU with x MIPS, what is the response time when there are 500 HTTP requests per second?

• Performance analysis question:
 • Given:
 • A computer system with a certain capacity
 • The workload
 • Find
 • The performance (response time, throughput etc) of the system

• Our method is:
 • Build analytical models of computer systems

• An important part of the analytical model is “queue”
 • You can surely relate “queues” to “waiting time”
Single server FIFO queue

- Queueing Theory terminologies
 - Server: Processing unit
 - FIFO: First-in first-out
 - Work conserving server
 - The server cannot be idle when there are jobs waiting to be processed in the queue

- Ex: Shop with only one checkout counter

- The server is a resource
 - Queues result from resource contention

- Main concern: response time
<table>
<thead>
<tr>
<th>Job index</th>
<th>Arrival time</th>
<th>Processing time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Assumption: server is idle when job #1 arrives

Job #1 is admitted into the server immediately since the server is idle.
Job #1 is completed and leaves the system at time 4.
Job #2 arrives when the server is idle. It gets admitted immediately.
Job #2 will be completed at time 10.
<table>
<thead>
<tr>
<th>Job index</th>
<th>Arrival time</th>
<th>Processing time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Job #3 arrives when Job #2 is being served i.e. the server is busy. Job #3 has to wait in the queue. Server starts processing Job #3 immediately after finishing Job #2.
<table>
<thead>
<tr>
<th>Job index</th>
<th>Arrival time</th>
<th>Processing time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Job #4 arrives when the server is processing Job#2 and Job#3 is in the queue. Job #4 joins the queue. It gets served at time 14, immediately after Job#3 is completed.
<table>
<thead>
<tr>
<th>Job index</th>
<th>Arrival time</th>
<th>Processing time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

- Definition: **Response time** = Departure time - arrival time

 Ex: **Response time for Job#4** = 8

- **Response time** = **Waiting time** + Processing time
<table>
<thead>
<tr>
<th>Job index</th>
<th>Arrival time</th>
<th>Processing time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Definition:** Utilisation = Percentage of time over which the server is busy
- **What is the utilisation of the server over the first 12s?**
 -

 \[
 \frac{8}{12} = 66.7\%
 \]
Single server FIFO queues

• Can be used to model
 • Shop with only one checkout counter
 • A single processor processing jobs in FIFO order
 • A disk processing job in FIFO order

• Model
 • An abstraction of the real system
 • Need to capture enough details to meet our analysis requirements
What if both inter-arrival time and processing time are deterministic?

<table>
<thead>
<tr>
<th>Job index</th>
<th>Arrival time</th>
<th>Processing time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

What is the waiting time for each job?
What is the response time for each job?
Determining response time

- Generally we need to know
 - The arrival pattern
 - Ex: The arrival rate
 - Ex: The inter-arrival time statistical distribution
 - The service time distribution
 - The time required to process the job
- Since we are interested in response time, our models capture the time related aspects of the real systems e.g. queueing, processing units
- We will learn different methods to determine response time in this course
Service time

• Time require to process a request at a resource
 • Ex: The service time to send a 1000 byte packet over a 10 kbps link is 0.8s. In this case,
 • Service time = packet size / transmission rate
 • Ex: The service time for a get a X byte large file from a disk is
 • Seek time + X / transfer rate
 • For a class of resources, we have
 • Service time = Overhead + Job size / Processing rate
Response time of M/M/1 queue (1)

- **M/M/1 queue**
 - A type of single server queue characterised by
 - Average arrival rate of jobs is λ
 - Average service demand per job is $1/\mu$
 - μ is the processing rate
 - Inter-arrival time and service demand are drawn from exponential distribution
 - Queueing theory shows that the mean response time for M/M/1 queue is $1 / (\mu - \lambda)$ if $\mu > \lambda$
Response time of M/M/1 queue (2)

• Example:
 • Current system:
 • Mean arrival rate λ is 2 requests/s
 • Mean service time $1/\mu = 0.2s \Rightarrow \mu = 5$
 • The response time = $1 / (5 - 2) = 0.33s$
 • What if arrival rate λ is doubled?
 • The new response time = $1 / (5 - 4) = 1s$
 • Nonlinear increase!
 • If the new response time is too big, what are your options assuming you still want the new customers?
Modelling computer systems

• Single server queue considers only a component within a computer system

• A request may require multiple resources
 • E.g. CPU, disk, network transmission

• We model a computer systems with multiple resources by a Queueing Networks (QNs)
Pictorial representation of single server queues

Arriving customers

Waiting line

Queue

Server

Jobs waiting to be processed

CPU

Finished jobs

Arriving jobs
Pictorial representation of queues

Systems with m servers

Waiting line
A simple database server

The server has a CPU and a disk.

A transaction may visit the CPU and disk multiple times.
Multi-class DB example

• Why multi-class?
 • Heterogeneity in service demands, workloads and service level objectives
 • Lumping into one single class may give inaccurate performance prediction

<table>
<thead>
<tr>
<th>transaction group</th>
<th>percent of total</th>
<th>avg. CPU time (sec)</th>
<th>avg. no. I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>45%</td>
<td>0.04</td>
<td>5.5</td>
</tr>
<tr>
<td>Medium</td>
<td>25%</td>
<td>0.18</td>
<td>28.9</td>
</tr>
<tr>
<td>Complex</td>
<td>30%</td>
<td>1.20</td>
<td>85</td>
</tr>
</tbody>
</table>
Multi-class traffic - exercise

• Consider a web server which
 • Stores frequently accessed pages in memory cache
 • Fetches other pages from the backend server

• How will you characterise these two service classes?
DB servers for batch jobs

- Example: Batch processing system
 - For summarising transactions only
 - No on-line transactions
Open vs. closed queueing networks (1)

Open queueing network
- External arrivals
- Workload intensity specified by arrival rate

Closed queueing network
- No external arrivals
- Workload intensity specified by customer population

Database server for batch jobs
- Running batch jobs overnight
 - E.g. producing managerial reports
- Assume once a job has completed, a new job starts
- Maintain constant number of customers in the system

In equilibrium, flow in = flow out

Throughput = arrival rate
Open vs. closed queueing networks (2)

Open queueing network
- Unbounded #customers
- For stable equilibrium
 - Throughput = arrival rate

Closed queueing network
- Known #customers
- Throughput depends on # customers etc.

Database server for batch jobs
- Running batch jobs overnight
 - E.g. producing managerial reports
- Assume once a job has completed, a new job starts
 - Maintain constant number of customers in the system

Open queueing network
- External arrivals
- Workload intensity specified by arrival rate
- Unbounded number of customers in the system
 - In equilibrium, flow in = flow out
 - Throughput = arrival rate

Closed queueing network
- Known #customers
- Throughput depends on # customers etc.

Diagram:
- Arriving transactions
 - Database server
 - CPU
 - Disk
 - Completing transactions
Open vs. closed queueing networks - Terminology

Work in closed queueing network is called transaction

Work in closed queueing network is called jobs
DB server - mixed model

- The server has both
 - External transactions
 - Batch jobs

Different techniques are needed to analyse open and closed queueing networks
DB server – Multi-programming level

• Some database server management systems (DBMS) set an upper limit on the number of active transactions within the system.
• This upper limit is called multi-programming level (MPL).

Figure 1. Simplified view of the mechanism used in external scheduling. A fixed limited number of transactions (MPL=4) are allowed into the DBMS simultaneously. The remaining transactions are held back in an external queue. Response time is the time from when a transaction arrives until it completes, including time spent queueing externally to the DBMS.

• A help page from SAP explaining MPL
• Picture from Schroder et al. “How to determine a good multi-programming level for external scheduling”
DB Server - Interactive systems

• Modelling client interaction
 • A client sends a job to the server
 • Upon receiving results from the server, the client goes into thinking mode and send a next job
• Model the client as a delay source with no waiting line.
Modelling LAN

• The interactive client connects to the DB server via an Ethernet (LAN)
 • The delay experience by a user in a LAN depends on the number of users (= load)
 • This is a load dependent resource
• The opposite of a load dependent resource is a load independent resource
DB server with interactive clients

Client in think mode

Delay resource

Load dependent resource
Capacity planning in action

• Modelling
 • Computer Systems --- Queueing Networks

• You will learn different techniques to analyse a number of different classes of queueing networks:
 • Open/closed single/multiple class
 • Operational Analysis & Bottleneck Analysis
 • The last two will be the topics for next week

• The QN model will allow you to do what-if analysis?
 • What if the arrival rate increases by 20%
 • The increase in arrival rate has increased response time by 10%. What if I change the disk to one that is 20% faster, will I have restored the original performance?
References

• Reading:
 • Menasce et al, Chapters 1 & 2
 • OR
 • Harcol-Balter. Chapters 1 & 2.

• Exercises:
 • Revision problems:
 • See course web site
 • You are expected to try these exercises. Solutions will be available on the web.