Exercise sheet 5 – Solutions and Hints

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. A dominating set of a graph G = (V, E) is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.

Degree-5 Dominating Set

Input: A graph G = (V, E) with maximum degree at most 5 and an integer k

Parameter: k

Question: Does G have a dominating set of size at most k?

Design a linear kernel for Degree-5 Dominating Set.

Solution sketch. Simplification rule: If $|V| > 6 \cdot k$, then return No.

Exercise 2. Consider the following problem.

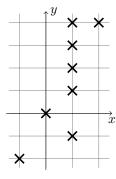
POINT LINE COVER

Input: A set of points P in \mathbb{Z}^2 , and an integer k

Parameter: k

Question: Is there a set L of at most k lines in \mathbb{R}^2 such that each point in P lies on at least one line in L?

Example: $(P = \{(-1, -2), (0, 0), (1, -1), (1, 1), (1, 2), (1, 3), (1, 4), (2, 4)\}, k = 2)$ is a Yes-instance since the lines y = 1 and y = 2x cover all the points.



Show that Point Line Cover has a polynomial kernel.

Hint.

- (1) Show that the algorithm can restrict its attention to a polynomial number of candidate lines (aim for $O(|P|^2)$).
- (2) Design a simplification rule for the case where one candidate line covers many points in P.
- (3) Design a simplification rule that solves Point Line Cover when |P| is large compared to t.

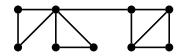
Exercise 3. A cluster graph is a graph where every connected component is a complete graph.

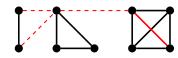
Cluster Editing

Input: Graph G = (V, E), integer k

Parameter: k

Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?





- 1. Show that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices).
- 2. Design a kernel for Cluster Editing with $O(k^2)$ vertices.

Hint. Design simplification rules for (1) a vertex that does not occur in any P_3 , (2) an edge that occurs in many P_3 s, and (3) a non-edge that occurs in many P_3 s

Exercise 4. A k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ if $uv \in E$.

SAVING COLORS

Input: Graph G, integer k

Parameter: k

Question: Does G have a (n-k)-coloring?

Design a kernel for SAVING COLORS with O(k) vertices. Recommendation: use the Crown Lemma.

Hint. Get rid of vertices v with $N_G[v] = V$ and consider the dual of G, i.e., the graph $\overline{G} = (V, \{uv : u, v \in V \text{ and } uv \notin E\})$. Use the Crown Lemma with \overline{G} and k-1.

Exercise 5. An edge clique cover of a graph G is a set of cliques in G so that each edge of G is contained in at least one of these cliques.

EDGE CLIQUE COVER

Input: graph G, integer k

Parameter: k

Question: Does G have an edge clique cover with k cliques?

Design a kernel for EDGE CLIQUE COVER with $O(2^k)$ vertices.

Hint. Consider 2 vertices that are contained in exactly the same cliques.