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Summary of topics
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Boolean Algebras
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Natural deduction
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Well-formed formulas

Let Prop = {p, q, r , . . .} be a set of propositional letters.
Consider the alphabet

Σ = Prop ∪ {>,⊥,¬,∧,∨,→,↔, (, )}.

The well-formed formulas (wffs) over Prop is the smallest set of
words over Σ such that:

>, ⊥ and all elements of Prop are wffs

If ϕ is a wff then ¬ϕ is a wff

If ϕ and ψ are wffs then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), and
(ϕ↔ ψ) are wffs.
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Examples

The following are well-formed formulas:

(p ∧ ¬>)

¬(p ∧ ¬>)

¬¬(p ∧ ¬>)

The following are not well-formed formulas:

p ∧ ∧
p ∧ ¬>
(p ∧ q ∧ r)

¬(¬p)
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Conventions
To aid readability some conventions and binding rules can and will
be used.

Parentheses omitted if there is no ambiguity (e.g. p ∧ q)

¬ binds more tightly than ∧ and ∨, which bind more tightly
than → and ↔ (e.g. p ∧ q → r instead of ((p ∧ q)→ r)

Other conventions (rarely used/assumed in this course):
′ or · for ¬
+ for ∨
· or juxtaposition for ∧
∧ binds more tightly than ∨
∧ and ∨ associate to the left: p ∨ q ∨ r instead of ((p ∨ q)∨ r)

→ and ↔ associate to the right: p → q → r instead of
(p → (q → r))
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Parse trees
The structure of well-formed formulas (and other grammar-defined
syntaxes) can be shown with a parse tree.

Example

((P ∧ ¬Q) ∨ ¬(Q → P))

∨
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Parse trees formally

Formally, we can define a parse tree as follows:
A parse tree is either:

(B) A node containing >;

(B) A node containing ⊥;

(B) A node containing a propositional variable;

(R) A node containing ¬ with a single parse tree child;

(R) A node containing ∧ with two parse tree children;

(R) A node containing ∨ with two parse tree children;

(R) A node containing → with two parse tree children; or

(R) A node containing ↔ with two parse tree children.
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Definition: Boolean Algebra
A Boolen algebra is a structure (T ,∨,∧,′ , 0, 1) where

0, 1 ∈ T

∨ : T × T → T (called join)

∧ : T × T → T (called meet)
′ : T → T (called complementation)

and the following laws hold for all x , y , z ∈ T :

commutative: x ∨ y = y ∨ x
x ∧ y = y ∧ x

associative: (x ∨ y) ∨ z = x ∨ (y ∨ z)
(x ∧ y) ∧ z = x ∧ (y ∧ z)

distributive: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

identity: x ∨ 0 = x , x ∧ 1 = x

complementation: x ∨ x ′ = 1, x ∧ x ′ = 0
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Examples of Boolean Algebras

The set of subsets of a set X :

T : Pow(X )

∧ : ∩
∨ : ∪
′ : c

0 : ∅
1 : X

Laws of Boolean algebra follow from Laws of Set Operations.
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Examples of Boolean Algebras

The two element Boolean Algebra :

B = ({true, false},&&, ‖, !, false, true)

where !,&&, ‖ are defined as:

!true = false; !false = true,

true && true = true; ...

true ‖ true = true; ...

NB

We will often use B for the two element set {true, false}. For
simplicity this may also be abbreviated as {T ,F} or {1, 0}.
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Examples of Boolean Algebras

Cartesian products of B, that is n-tuples of 0’s and 1’s with
Boolean operations, e.g. B4:

join: (1, 0, 0, 1) ∨ (1, 1, 0, 0) = (1, 1, 0, 1)

meet: (1, 0, 0, 1) ∧ (1, 1, 0, 0) = (1, 0, 0, 0)

complement: (1, 0, 0, 1)′ = (0, 1, 1, 0)

0: (0, 0, 0, 0)

1: (1, 1, 1, 1).
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Examples of Boolean Algebras

Functions from any set S to B; their set is denoted Map(S ,B)

If f , g : S −→ B then

(f ∨ g) : S −→ B is defined by s 7→ f (s) ‖ g(s)

(f ∧ g) : S −→ B is defined by s 7→ f (s) && g(s)

f ′ : S −→ B is defined by s 7→!f (s)

0 : S −→ B is the function f (s) = false

1 : S −→ B is the function f (s) = true
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Examples of Boolean Algebras

If (T ,∨,∧,′ , 0, 1) is a Boolean algebra, then the dual algebra
(T ,∧,∨,′ , 1, 0) is also a Boolean Algebra. For example:

T : Pow(X )

∧ : ∪
∨ : ∩
′ : c

0 : X

1 : ∅
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Every finite Boolean algebra satisfies: |T | = 2k for some k.
All algebras with the same number of elements are isomorphic,
i.e. “structurally similar”, written '. Therefore, studying one such
algebra describes properties of all.
The algebras mentioned above are all of this form

n-tuples ' Bn

Pow(S) ' B|S|

Map(S ,B) ' B|S |

NB

Boolean algebra as the calculus of two values is fundamental to
computer circuits and computer programming.
Example: Encoding subsets as bit vectors.
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