COMP2111 Week 3 Term 1, 2019 Propositional Logic

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Summary of topics

- Well-formed formulas (SYNTAX)
- Boolean Algebras
- Valuations (SEMANTICS)
- CNF/DNF
- Proof
- Natural deduction

Summary of topics

• Well-formed formulas

- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Well-formed formulas

Let $PROP = \{p, q, r, ...\}$ be a set of propositional letters. Consider the alphabet

$$\Sigma = \operatorname{Prop} \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}.$$

The well-formed formulas (wffs) over PROP is the smallest set of words over Σ such that:

- \top , \perp and all elements of PROP are wffs
- If φ is a wff then $\neg \varphi$ is a wff
- If φ and ψ are wffs then $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$ are wffs.

Examples

The following are well-formed formulas:

- $(p \land \neg \top)$
- $\neg (p \land \neg \top)$
- $\neg\neg(p \land \neg\top)$

The following are **not** well-formed formulas:

- $p \wedge \wedge$
- $p \land \neg \top$
- $(p \land q \land r)$
- $\neg(\neg p)$

Conventions

To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. $p \land q$)
- \neg binds more tightly than \land and \lor , which bind more tightly than \rightarrow and \leftrightarrow (e.g. $p \land q \rightarrow r$ instead of $((p \land q) \rightarrow r)$

Other conventions (rarely used/assumed in this course):

- ' or $\overline{\cdot}$ for \neg
- + for \lor
- ullet \cdot or juxtaposition for \wedge
- ullet \wedge binds more tightly than \lor
- \land and \lor associate to the left: $p \lor q \lor r$ instead of $((p \lor q) \lor r)$
- \rightarrow and \leftrightarrow associate to the right: $p \rightarrow q \rightarrow r$ instead of $(p \rightarrow (q \rightarrow r))$

Conventions

To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. $p \land q$)
- \neg binds more tightly than \land and \lor , which bind more tightly than \rightarrow and \leftrightarrow (e.g. $p \land q \rightarrow r$ instead of $((p \land q) \rightarrow r)$

Other conventions (rarely used/assumed in this course):

- ' or $\overline{\cdot}$ for \neg
- + for \lor
- $\bullet~\cdot$ or juxtaposition for \wedge
- $\bullet~\wedge$ binds more tightly than \lor
- \wedge and \vee associate to the left: $p \lor q \lor r$ instead of $((p \lor q) \lor r)$
- \rightarrow and \leftrightarrow associate to the right: $p \rightarrow q \rightarrow r$ instead of $(p \rightarrow (q \rightarrow r))$

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

Example

$$((P \land \neg Q) \lor \neg (Q \to P))$$

 \vee

Parse trees formally

Formally, we can define a parse tree as follows: A parse tree is either:

- (B) A node containing \top ;
- (B) A node containing \perp ;
- (B) A node containing a propositional variable;
- (R) A node containing \neg with a single parse tree child;
- (R) A node containing \land with two parse tree children;
- (R) A node containing \lor with two parse tree children;
- (R) A node containing \rightarrow with two parse tree children; or
- (R) A node containing \leftrightarrow with two parse tree children.

Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Definition: Boolean Algebra

A Boolen algebra is a structure $(T, \lor, \land, ', 0, 1)$ where

- $0, 1 \in T$
- $\vee : T \times T \to T$ (called join)
- $\wedge : T \times T \to T$ (called **meet**)
- ': $T \rightarrow T$ (called complementation)

and the following laws hold for all $x, y, z \in T$:

commutative: • $x \lor y = y \lor x$

•
$$x \wedge y = y \wedge x$$

associative:

•
$$(x \lor y) \lor z = x \lor (y \lor z)$$

• $(x \land y) \land z = x \land (y \land z)$

distributive:

•
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

• $x \land (y \lor z) = (x \land y) \lor (x \land z)$

identity: $x \lor 0 = x$, $x \land 1 = x$

complementation: $x \lor x' = 1$, $x \land x' = 0$

The set of subsets of a set X:

- T : Pow(X)
- $\bullet \ \land: \ \cap$
- V: U
- ': ^c
- 0: Ø
- 1 : X

Laws of Boolean algebra follow from Laws of Set Operations.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

The two element Boolean Algebra :

```
\mathbb{B} = (\{\texttt{true}, \texttt{false}\}, \&\&, \|, !, \texttt{false}, \texttt{true})
```

where $!, \&\&, \parallel$ are defined as:

- !true = false; !false = true,
- true && true = true; ...
- true \parallel true = true; ...

NB

We will often use \mathbb{B} for the two element set {true, false}. For simplicity this may also be abbreviated as {T, F} or {1,0}.

Cartesian products of \mathbb{B} , that is *n*-tuples of 0's and 1's with Boolean operations, e.g. \mathbb{B}^4 :

join: $(1,0,0,1) \lor (1,1,0,0) = (1,1,0,1)$ *meet:* $(1,0,0,1) \land (1,1,0,0) = (1,0,0,0)$ *complement:* (1,0,0,1)' = (0,1,1,0)0: (0,0,0,0)1: (1,1,1,1).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Functions from any set S to \mathbb{B} ; their set is denoted Map (S, \mathbb{B})

If $f, g: S \longrightarrow \mathbb{B}$ then

- $(f \lor g) : S \longrightarrow \mathbb{B}$ is defined by $s \mapsto f(s) \parallel g(s)$
- $(f \land g) : S \longrightarrow \mathbb{B}$ is defined by $s \mapsto f(s)$ && g(s)
- $f': S \longrightarrow \mathbb{B}$ is defined by $s \mapsto !f(s)$
- $0: S \longrightarrow \mathbb{B}$ is the function f(s) = false
- $1: S \longrightarrow \mathbb{B}$ is the function f(s) =true

If $(T, \lor, \land, ', 0, 1)$ is a Boolean algebra, then the **dual algebra** $(T, \land, \lor, ', 1, 0)$ is also a Boolean Algebra. For example:

- *T* : Pow(*X*)
- $\bullet \ \land : \ \cup$
- $\bullet \ \lor : \ \cap$
- ': ^c
- 0 : *X*
- 1: Ø

Every finite Boolean algebra satisfies: $|T| = 2^k$ for some k. All algebras with the same number of elements are **isomorphic**, i.e. "structurally similar", written \simeq . Therefore, studying one such algebra describes properties of all.

The algebras mentioned above are all of this form

- *n*-tuples $\simeq \mathbb{B}^n$
- Pow(S) $\simeq \mathbb{B}^{|S|}$
- $Map(S, \mathbb{B}) \simeq \mathbb{B}^{|S|}$

NB

Boolean algebra as the calculus of two values is fundamental to computer circuits and computer programming. Example: Encoding subsets as bit vectors.