COMP2111 Week 3
 Term 1, 2019
 Propositional Logic

Summary of topics

- Well-formed formulas (SYNTAX)
- Boolean Algebras
- Valuations (SEMANTICS)
- CNF/DNF
- Proof
- Natural deduction

Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Well-formed formulas

Let Prop $=\{p, q, r, \ldots\}$ be a set of propositional letters.
Consider the alphabet

$$
\Sigma=\operatorname{Prop} \cup\{\top, \perp, \neg, \wedge, \vee, \rightarrow, \leftrightarrow,(,)\}
$$

The well-formed formulas (wffs) over Prop is the smallest set of words over Σ such that:

- T, \perp and all elements of Prop are wffs
- If φ is a wff then $\neg \varphi$ is a wff
- If φ and ψ are wffs then $(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi)$, and ($\varphi \leftrightarrow \psi$) are wffs.

Examples

The following are well-formed formulas:

- $(p \wedge \neg T)$
- $\neg(p \wedge \neg T)$
- $\neg \neg(p \wedge \neg \top)$

The following are not well-formed formulas:

- $p \wedge \wedge$
- $p \wedge \neg T$
- $(p \wedge q \wedge r)$
- $\neg(\neg p)$

Conventions

To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. $p \wedge q$)
- \neg binds more tightly than \wedge and \vee, which bind more tightly than \rightarrow and \leftrightarrow (e.g. $p \wedge q \rightarrow r$ instead of $((p \wedge q) \rightarrow r)$

Conventions

To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. $p \wedge q$)
- \neg binds more tightly than \wedge and \vee, which bind more tightly than \rightarrow and \leftrightarrow (e.g. $p \wedge q \rightarrow r$ instead of $((p \wedge q) \rightarrow r)$

Other conventions (rarely used/assumed in this course):

- ' or ${ }^{-}$for \neg
- + for \vee
- - or juxtaposition for \wedge
- \wedge binds more tightly than \vee
- \wedge and \vee associate to the left: $p \vee q \vee r$ instead of $((p \vee q) \vee r)$
- \rightarrow and \leftrightarrow associate to the right: $p \rightarrow q \rightarrow r$ instead of $(p \rightarrow(q \rightarrow r))$

Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

$$
((P \wedge \neg Q) \vee \neg(Q \rightarrow P))
$$

Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

$$
((P \wedge \neg Q) \vee \neg(Q \rightarrow P))
$$

Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

$$
((P \wedge \neg Q) \vee \neg(Q \rightarrow P))
$$

Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

$$
((P \wedge \neg Q) \vee \neg(Q \rightarrow P))
$$

Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a parse tree.

Example

$$
((P \wedge \neg Q) \vee \neg(Q \rightarrow P))
$$

Parse trees formally

Formally, we can define a parse tree as follows:
A parse tree is either:

- (B) A node containing T;
- (B) A node containing \perp;
- (B) A node containing a propositional variable;
- (R) A node containing \neg with a single parse tree child;
- (R) A node containing \wedge with two parse tree children;
- (R) A node containing V with two parse tree children;
- (R) A node containing \rightarrow with two parse tree children; or
- (R) A node containing \leftrightarrow with two parse tree children.

Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Definition: Boolean Algebra

A Boolen algebra is a structure $\left(T, \vee, \wedge,{ }^{\prime}, 0,1\right)$ where

- $0,1 \in T$
- $\vee: T \times T \rightarrow T$ (called join)
- $\wedge: T \times T \rightarrow T$ (called meet)
${ }^{\prime}{ }^{\prime}: T \rightarrow T$ (called complementation)
and the following laws hold for all $x, y, z \in T$:
commutative: $\bullet x \vee y=y \vee x$
- $x \wedge y=y \wedge x$
associative: $\quad(x \vee y) \vee z=x \vee(y \vee z)$
- $(x \wedge y) \wedge z=x \wedge(y \wedge z)$
distributive:
- $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
- $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
identity: $x \vee 0=x, \quad x \wedge 1=x$
complementation: $x \vee x^{\prime}=1, \quad x \wedge x^{\prime}=0$

Examples of Boolean Algebras

The set of subsets of a set X :

- $T: \operatorname{Pow}(X)$
- \wedge : \cap
- \vee : \cup
$\bullet^{\prime}:{ }^{c}$
- 0: \emptyset
- 1: X

Laws of Boolean algebra follow from Laws of Set Operations.

Examples of Boolean Algebras

The two element Boolean Algebra :

$$
\mathbb{B}=(\{\text { true }, \text { false }\}, \& \&, \|,!, \text { false }, \text { true })
$$

where ! , \&\&, $\|$ are defined as:

- !true = false; !false = true,
- true \&\& true $=$ true; \ldots
- true $\|$ true $=$ true;..

NB

We will often use \mathbb{B} for the two element set $\{$ true, false $\}$. For simplicity this may also be abbreviated as $\{T, F\}$ or $\{1,0\}$.

Examples of Boolean Algebras

Cartesian products of \mathbb{B}, that is n-tuples of 0 's and 1 's with Boolean operations, e.g. \mathbb{B}^{4} :

$$
\begin{aligned}
\text { join: } & (1,0,0,1) \vee(1,1,0,0)=(1,1,0,1) \\
\text { meet: } & (1,0,0,1) \wedge(1,1,0,0)=(1,0,0,0) \\
\text { complement: } & (1,0,0,1)^{\prime}=(0,1,1,0) \\
0: & (0,0,0,0) \\
1: & (1,1,1,1) .
\end{aligned}
$$

Examples of Boolean Algebras

Functions from any set S to \mathbb{B}; their set is denoted $\operatorname{Map}(S, \mathbb{B})$
If $f, g: S \longrightarrow \mathbb{B}$ then

- $(f \vee g): S \longrightarrow \mathbb{B}$ is defined by $s \mapsto f(s) \| g(s)$
- $(f \wedge g): S \longrightarrow \mathbb{B}$ is defined by $s \mapsto f(s) \& \& g(s)$
- $f^{\prime}: S \longrightarrow \mathbb{B}$ is defined by $s \mapsto!f(s)$
- $0: S \longrightarrow \mathbb{B}$ is the function $f(s)=$ false
- $1: S \longrightarrow \mathbb{B}$ is the function $f(s)=$ true

Examples of Boolean Algebras

If $\left(T, \vee, \wedge,{ }^{\prime}, 0,1\right)$ is a Boolean algebra, then the dual algebra $\left(T, \wedge, \vee,^{\prime}, 1,0\right)$ is also a Boolean Algebra. For example:

- $T: \operatorname{Pow}(X)$
- $\wedge: \cup$
- $\vee: \cap$
- ': ${ }^{c}$
- 0: X
- 1: \emptyset

Every finite Boolean algebra satisfies: $|T|=2^{k}$ for some k. All algebras with the same number of elements are isomorphic, i.e. "structurally similar", written \simeq. Therefore, studying one such algebra describes properties of all.
The algebras mentioned above are all of this form

- n-tuples $\simeq \mathbb{B}^{n}$
- $\operatorname{Pow}(S) \simeq \mathbb{B}^{|S|}$
- $\operatorname{Map}(S, \mathbb{B}) \simeq \mathbb{B}^{|S|}$

NB

Boolean algebra as the calculus of two values is fundamental to computer circuits and computer programming.
Example: Encoding subsets as bit vectors.

