
COMP1511 - Programming
Fundamentals
Term 1, 2019 - Lecture 7

Stream B

What did we learn last week?
Code Reviews

● Sharing our code to learn more and catch mistakes

Debugging

● The gentle art of finding and removing software errors (bugs)

Looping C

● More looping code as well as ints vs doubles

What are we covering today?
Computers as theoretical tools

● Fundamentals of what a computer is
● How we use memory in C

Arrays

● Using multiple variables at once

What is a computer?
At the most fundamental level . . .

● A processor that executes instructions
● Some memory that holds information

The Turing Machine
Originally a theoretical idea of computation

● There is a tape that can be infinitely long
● We have a “head” that can read or write to this tape
● We can move the head along to any part of the tape
● There’s a “state” in which the machine remembers its current status
● There’s a set of instructions that say what to do in each state

Turing Machines
Some images of Turing Machines

● A tape and a read/write head
● Some idea of control of the

head

The Processor
We also call them Central Processing Units (CPUs)

● Maintains a “state”
● Works based on a current set of instructions
● Can read and write from/to memory

In our C Programming

● State - where are we up to in the code right now
● Instructions - compiled from our lines of code
● Reading/Writing - Variables

Memory
All forms of Data Storage on a computer

● From registers (tiny bits of memory on the CPU) through Random Access
Memory (RAM) and to the Hard Disk Drive. All of these are used to
remember something

CPU
Registers RAM Hard Drive

Faster, smaller, volatile Slower, larger, more permanent

How does C use memory
● On the Hard Drive
● Our C source code files are stored on our Hard Drive
● Dcc compiles our source into another file, the executable program

● In Memory
● When we run our program, all the instructions are copied into RAM
● Our CPU will work through memory executing our instructions in order
● Our variables are stored in RAM as well
● Reading and writing to variables will change the numbers in RAM

A snapshot of a program in memory
What happens in memory when we run a program?

● Our Operating System gives us a chunk of memory
● Our program copies its instructions there

● Some space is reserved for declared variables
● The Stack is used to track the current state
● The stack grows and shrinks as the program runs
● The Heap is empty and ready for use
● We can use the heap to store data while the

program is running

Our instructions

Variables

Current state
(known as the

stack)

Empty space
(known as the

heap)

There’s more . . . later
Computers and programs are highly complex

● This was just an overview
● As you go through your learning, you will unlock more information
● For now, we have enough understanding to continue using C

Arrays
When we need a collection of variables together

● Sometimes we need a bunch of variables of the same type
● We also might need to process them all
● Our current use of ints and doubles might not be able to handle this

Let’s take a look at our current capability (and why we need arrays) . . .

An Example
Let’s record everyone’s marks at the end of the term

● We could do this as a large collection of integers . . .

int main (void) {
 int marksJames1;
 int marksJames2;
 int marksJames3;
 int marksJames4;
 // etc

If we want to test all these ints
We’d need a whole bunch of identical if statements

int main (void) {
 int marksJames1;
 int marksJames2;
 int marksJames3;
 int marksJames4;
 // etc

 if (marksJames1 >= 50) {
 // pass
 }
 if (marksJames2 >= 50) {
 // pass
 }
 // etc

In this situation

● There’s no way to loop through the
integers

● Having to rewrite the same code is
annoying and hard to read or edit

● So let’s find a better way . . .

An Array of Integers
If our integers are listed as a collection

● We’ll be able to access them as a group
● We’ll be able to loop through and access each individual element

We’ll look at how they work after the break

Break Time
Theory Behind Computers

● The idea of a processor
and memory

● How C uses memory

Arrays

● We’re moving on to
collections of variables

How to Approach Weekly Tests
The difference between labs and tests

● Some people will try to complete all labs 100%
● This is possible
● Some people will try to get 100% in weekly tests
● This is only just maybe possible

● 0-1 Questions - Come to help sessions, maybe do some extra reading
● 1-2 Questions - You are doing fine, keep it up
● 2-3 Questions - Things have gone very well this week, keep working!

Arrays
What is an array?

● A variable is a small amount of memory
● An array is a larger amount of memory that contains multiple variables
● All of the elements (individual variables) in an array are the same type
● Individual elements don’t get names, they are accessed by an integer index

Int

A single integer
worth of memory

Int Int Int Int Int

An array that holds 5 integers

Declaring an Array
Similar, but more complex than declaring a variable

● int - the type of the variables stored in the array
● [10] - the number of elements in the array
● = {0} - Initialises the array as all zeroes

int main (void) {
 // declare an array
 int arrayOfMarks[10] = {0};

Array Elements
● An element is a single variable inside the array
● They are accessed by their index, an int that is like their address
● Indexes start from 0
● Trying to access an index outside of the array will cause errors

In this example, element 2 of arrayOfMarks is 44 and element 6 is 62

55 70 44 91 82

0 1 2 3 4

arrayOfMarks 64 62 68 32 72

5 6 7 8 9

Accessing elements in C
C code for reading and writing to individual elements

int main (void) {
 // declare an array, all zeroes
 int arrayOfMarks[10] = {0};

 // make first element 85
 arrayOfMarks[0] = 85;
 // access using a variable
 int accessIndex = 3;
 arrayOfMarks[accessIndex] = 50;
 // copy one element over another
 arrayOfMarks[2] = arrayOfMarks[6];
 // cause an error by trying to access out of bounds
 arrayOfMarks[10] = 99;

Reading and Writing
Printf and scanf with arrays

● We can’t printf a whole array
● We also can’t scanf a line of user input text into an array
● We can do it for individual elements though!

The trick then becomes looping to access all individual elements one by one

User input/output with Arrays
Using printf and scanf with Arrays

int main (void) {
 // declare an array, all zeroes
 int arrayOfMarks[10] = {0};

 // read from user input into 3rd element
 scanf(“%d”, &arrayOfMarks[2]);
 // output value of 5th element
 printf(“The 5th Element is: %d”, arrayOfMarks[4]);

 // the following code DOES NOT WORK
 scanf(“%d %d %d %d %d %d %d %d %d %d”, &arrayOfMarks);

Let’s make a basic program using Arrays
Let’s use an array to store the marks of a class of students

● The program will have an array of five students’ marks
● It will output all the marks to verify that they were correct
● It will then tell us what the average marks were

Break it down
As always, start simple and build up

● We’ll start by creating an array
● Then we’ll access the elements to put values in
● Finally, we’ll loop through, accessing elements by index to output them

Creating the Array in Code

int main (void) {
 // declare the array, size 5
 int arrayOfMarks[5] = {0};

 // enter the marks (we’re doing this manually for now)
 arrayOfMarks[0] = 63;
 arrayOfMarks[1] = 88;
 arrayOfMarks[2] = 43;
 arrayOfMarks[3] = 55;
 arrayOfMarks[4] = 67;

Assigning elements via their index

Let’s loop through and see those values
Accessing all array elements by looping

 // continued from last slide
 // loop through the array and output the elements
 int counter = 0;
 while (counter < 5) {
 printf(“%d\n”, arrayOfMarks[counter]);
 counter++;
 }

Now that we have our array
It will look a bit like this:

Next, we can loop through to find:

● The lowest
● The highest
● And the average

63 88 43 55 67

0 1 2 3 4

arrayOfMarks

Looping and Arrays
 // continued from previous slides
 // loop through the array and add up the marks
 counter = 0;
 int total = 0;
 while (counter < 5) {
 total += arrayOfMarks[counter];
 counter++;
 }
 double numElements = 5;
 double avgMark = total/numElements;
 printf(“Average Mark was: %lf\n”, avgMark);

Wait, what was that new syntax?
+= is another shorthand operator

● It’s used for accumulating values in a variable

 int a = 0;
 int b = 0;

 // These two lines of code will do the same thing
 a += 5;
 b = b + 5;

 // both a and b are now equal to 5

What about input into an array?
This program would be much more useful if we could input marks

● We can run scanf inside a loop to enter values

int main (void) {
 // declare the array, size 5
 int arrayOfMarks[5] = {0};

 // enter the marks from user input by looping
 int counter = 0;
 while (counter < 5) {
 scanf(“%d”, &arrayOfMarks[counter]);
 }

A Marks Calculator
Now we have a program that totals marks and calculates an average

● It uses an array to store multiple similar values
● We’ve looked at accessing elements of an array
● We’ve also looked at looping through the array for different purposes

Challenges

● Can you find the highest and lowest marks?
● Can you also output which indexes you found the highest and lowest in?

What did we learn today?
Computers in Theory

● A processor and some memory
● Turing machines as theoretical computers
● How C works in memory

Arrays

● How to make and use arrays of integers
● How to loop through arrays

