COMP1511 - Programming
Fundamentals

— Term 1, 2019 - Lecture 7 S
Stream B

What did we learn last week?

Code Reviews

e Sharing our code to learn more and catch mistakes
Debugging

e The gentle art of finding and removing software errors (bugs)
Looping C

e More looping code as well as ints vs doubles

What are we covering today?

Computers as theoretical tools

e Fundamentals of what a computer is
e How we use memoryin C

Arrays

e Using multiple variables at once

What is a computer?

At the most fundamental level...

e A processor that executes instructions
e Some memory that holds information

The Turing Machine

Originally a theoretical idea of computation

There is a tape that can be infinitely long

We have a “head” that can read or write to this tape

We can move the head along to any part of the tape

There's a “state” in which the machine remembers its current status
There's a set of instructions that say what to do in each state

Turing Machines

Some images of Turing Machines

e Atape and a read/write head
e Some idea of control of the
head

0

Offset print raised for a "mark"

eraser

electric eye logking i
at tape squére R

{3
= =
Tractor roller
S 4
j TAPE
Iul fractor hole g| Indefinghiole, 7*

oobodoaoo/oa/od N0OOD00O00000000O
2 0 ory e Gy url Jenltoibigiode

Eraser
Offset-printing + eraser roller

I
| Il

I! Il %
i)

e e et — — 2L
0

-mark on tape blank square

mark in process of erasure

=
Current Current Current
symbol TABLE |stateA state B state C:
Print, Erase
Left, Right Write Move Next| Write Move Next| Wite Move Next
x symbol: tape state:| symbol: tape state [symbol: tape state:
tapesymbolis0| 1 R B 1 E A 1 L B
. tapesymbolis | 1 L G 1 R B 1 N HALT]
Control unit

A fanciful mechanical Turing machine's TAPE and HEAD. The TABLE instructions might be on another
"read only" tape, or perhaps on punch-cards. Usually a "finite state machine" is the model for the TABLE.

The Processor

We also call them Central Processing Units (CPUSs)

e Maintains a “state”
e Works based on a current set of instructions
e (Canread and write from/to memory

In our C Programming

e State - where are we up to in the code right now
e Instructions - compiled from our lines of code
e Reading/Writing - Variables

Memory

All forms of Data Storage on a computer

e From registers (tiny bits of memory on the CPU) through Random Access
Memory (RAM) and to the Hard Disk Drive. All of these are used to
remember something

RAM

« >
Faster, smaller, volatile Slower, larger, more permanent

How does C use memory

On the Hard Drive
Our C source code files are stored on our Hard Drive
Dcc compiles our source into another file, the executable program

In Memory

When we run our program, all the instructions are copied into RAM
Our CPU will work through memory executing our instructions in order
Our variables are stored in RAM as well

Reading and writing to variables will change the numbers in RAM

A snapshot of a program in memory

What happens in memory when we run a program?

Our Operating System gives us a chunk of memory
Our program copies its instructions there

Some space is reserved for declared variables
The Stack is used to track the current state

The stack grows and shrinks as the program runs
The Heap is empty and ready for use

We can use the heap to store data while the
program is running

Current state
(known as the
stack)

Empty space
(known as the
heap)

Variables

Our instructions

There’s more.. .. later

Computers and programs are highly complex

e This was just an overview
e Asyou go through your learning, you will unlock more information
e For now, we have enough understanding to continue using C

Arrays

When we need a collection of variables together

e Sometimes we need a bunch of variables of the same type
e We also might need to process them all
e Our current use of ints and doubles might not be able to handle this

Let's take a look at our current capability (and why we need arrays)...

An Example

Let’'s record everyone’s marks at the end of the term

e We could do this as a large collection of integers . ..

int main (void) {
int marksJamesl;
int marksJames2;
int marksJames3;
int marksJames4;
// etc

If we want to test all these ints

We'd need a whole bunch of identical if statements

In this situation int main (void) {

int marksJamesl;
int marksJames?2;
int marksJames3;

e There's no way to loop through the

integers int marksJames4;
e Having to rewrite the same code is /] ste
annoying and hard to read or edit if (marksJamesl >= 50) ({
e Solet’s find a better way . . . } /] pass
if (marksJames2 >= 50) {
// pass

}
// etc

An Array of Integers

If our integers are listed as a collection

e We'll be able to access them as a group
e We'll be able to loop through and access each individual element

We'll look at how they work after the break

Break Time

Theory Behind Computers

e The idea of a processor
and memory
e How C uses memory

Arrays

e We're moving onto
collections of variables

Brenan Keller \/ \
Follow v
N @brenankeller S /

A QA engineer walks into a bar. Orders a
beer. Orders 0 beers. Orders 99999999999
beers. Orders a lizard. Orders -1 beers. Orders
a ueicbksjdhd.

First real customer walks in and asks where
the bathroom is. The bar bursts into flames,
killing everyone.

1:21 PM - 30 Nov 2018

How to Approach Weekly Tests

The difference between labs and tests

Some people will try to complete all labs 100%
This is possible

Some people will try to get 100% in weekly tests
This is only just maybe possible

0-1 Questions - Come to help sessions, maybe do some extra reading
1-2 Questions - You are doing fine, keep it up
e 2-3 Questions - Things have gone very well this week, keep working!

Arrays

What is an array?

A variable is a small amount of memory

An array is a larger amount of memory that contains multiple variables

All of the elements (individual variables) in an array are the same type
Individual elements don't get names, they are accessed by an integer index

Int Int Int Int Int Int

A single integer An array that holds 5 integers
worth of memory

Declaring an Array

Similar, but more complex than declaring a variable

int main (void) {
// declare an array
int arrayOfMarks[10] = {0};

e int-the type of the variables stored in the array
e [10] - the number of elements in the array
e ={0}- Initialises the array as all zeroes

Array Elements

An element is a single variable inside the array

They are accessed by their index, an int that is like their address
Indexes start from O

Trying to access an index outside of the array will cause errors

arrayOfMarks | 55 | 70 | 44 | 91 | 82 | 64 | 62 | 68 | 32 | 72

In this example, element 2 of arrayOfMarks is 44 and element 6 is 62

Accessing elements in C

C code for reading and writing to individual elements

int main (void) {
// declare an array, all zeroes
int arrayOfMarks[10] = {0},

// make first element 85
arrayOfMarks[0] = 85;

// access using a variable

int accessIndex = 3;
arrayOfMarks[accessIndex] = 50;
// copy one element over another

arrayOfMarks[10] = 99;

arrayOfMarks[2] = arrayOfMarks|[6];
// cause an error by trying to access out of bounds

Reading and Writing

Printf and scanf with arrays

e We can't printf a whole array
e We also can't scanf a line of user input text into an array
e We can do it for individual elements though!

The trick then becomes looping to access all individual elements one by one

User input/output with Arrays

Using printf and scanf with Arrays

int main (void) {
// declare an array, all zeroes
int arrayOfMarks[10] = {0},

// read from user input into 3rd element

scanf (“%d”, &arrayOfMarks[2]) ;

// output value of 5th element

printf (“"The 5th Element is: %d”, arrayOfMarks[4]);

// the following code DOES NOT WORK
scanf (“%d %d %d %d %d %d %d %d %d %d”, &arrayOfMarks) ;

Let’s make a basic program using Arrays

Let’s use an array to store the marks of a class of students

e The program will have an array of five students’ marks
e |t will output all the marks to verify that they were correct
e It will then tell us what the average marks were

Break it down

As always, start simple and build up

e We'll start by creating an array
e Then we'll access the elements to put values in
e Finally, we'll loop through, accessing elements by index to output them

Creating the Array in Code

Assigning elements via their index

int main (void) {
// declare the array, size 5
int arrayOfMarks[5] = {0};

// enter the marks (we’re doing this manually for now)

arrayOfMarks[0] = 63;
arrayOfMarks[1l] = 88;
arrayOfMarks[2] = 43;
arrayOfMarks[3] = 55;
arrayOfMarks[4] = 67;

Let’s loop through and see those values

Accessing all array elements by looping

// continued from last slide
// loop through the array and output the elements
int counter = 0;
while (counter < 5) {
printf (“%d\n”, arrayOfMarks[counter]) ;
counter++;

Now that we have our array

It will look a bit like this:

arrayOfMarks

0

63

88

43

95

67

Next, we can loop through to find:

e The lowest
e The highest
e And the average

Looping and Arrays

// continued from previous slides

// loop through the array and add up the marks

counter = 0;

int total = 0;

while (counter < 5) {
total += arrayOfMarks[counter];
counter++;

}

double numElements = 5;

double avgMark = total/numElements;

printf (“Average Mark was: %1f\n”, avgMark) ;

Wait, what was that new syntax?

+= is another shorthand operator

e |It's used for accumulating values in a variable

0;
0;

int a =
int b =
// These two lines of code will do the same thing
a += 5;

b=D>b+ 5;

// both a and b are now equal to 5

What about input into an array?

This program would be much more useful if we could input marks

e We can run scanfinside a loop to enter values

int main (void) {
// declare the array, size 5
int arrayOfMarks[5] = {0};

// enter the marks from user input by looping
int counter = 0;

while (counter < 5) {
scanf (“$d”, &arrayOfMarks[counter]) ;

}

A Marks Calculator

Now we have a program that totals marks and calculates an average

e |tuses an array to store multiple similar values
e We've looked at accessing elements of an array
e We've also looked at looping through the array for different purposes

Challenges

e Canyou find the highest and lowest marks?
e Can you also output which indexes you found the highest and lowest in?

What did we learn today?

Computers in Theory

e A processor and some memory
e Turing machines as theoretical computers
e How Cworks in memory

Arrays

e How to make and use arrays of integers
e How to loop through arrays

