COMP 3331/9331:
Computer Networks and

Applications

Week 5
Transport Layer (Continued)

Reading Guide: Chapter 3, Sections: 3.5

Transport Layer (contd.)

Announcements

< lTutorial | in Week 5

" Problem solving prep for exam

% Assignment |

* Have you started!?

Do not delay

Be careful about plagiarism
» Read specification thoroughly
" Post questions on forum
+ Mid-semester Exam in Week 6

= Monday, 29" August during regular lecture hours
= Details at end of slide set

Transport Layer (contd.)

2

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

Pipelined protocols

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer

3

Practice Problem: RDT

Self Study

http://www-net.cs.umass.edu/kurose_ross/interactive/rdt22.php

Transport Layer 4

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
» buffering at sender and/or receiver

data packet—» data packets—» .&

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

+ two generic forms of pipelined (sliding window)
protocols: go-Back-N, selective repeat

Transport Layer

Pipelinin

sender

first packet bit transmitted, t =0
last bit transmitted, t = L/ R1]

RTT

ACK arrives, send next,
packet, t=RTT +L/R |

: increased utilization

receiver

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2nd packet arrives, send ACK
last bit of 3" packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

3L/R 3x 125 /
U, . - _ 3x125
sender = e /R fooerzs 07

Transport Layer

Pipelined protocols: overview

Go-back-N:

% sender can have up to
N unacked packets in
pipeline

% receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap

< sender has timer for
oldest unacked packet

= when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack ed packets in
pipeline

% rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

" when timer expires,
retransmit only that
unacked packet

Transport Layer

7

Go-Back-N: sender

% k-bit seq # in pkt header
= “window” of up to N, consecutive unack’ ed pkts allowed

send_base hextsegnum dlready Usable. nof
lv L ack’ed yet sent
TN | sz] roens
t __ window size—%
N

= ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”™

" may receive duplicate ACKs (see receiver)
+ timer for oldest in-flight pkt

+ timeout(n): retransmit packet n and all higher seq # pkts in
window

Applet: http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/go-back-n/go-back-n.html

Transport Layer 8

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextsegnum-++
A else
— ., refuse_data(data
base=1 ‘o, — ()

nextseqhum=1 ™

* timeout
start_timer
0 udt_send(sndpkt[base])
O Q udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqnum-1]

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&)
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer
- Transport Layer 9

GBN: receiver extended FSM

default

udt_send(sndpkt) rdt_rcv(rcvpkt)
- C) && notcurrupt(rcvpkt)

A T~a o - && hasseqgnum(rcvpkt,expectedseqnum)
= -

expectedseqnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedseqnum
% out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

" re-ACK pkt with highest in-order seq #

Transport Layer 10

GBN in action

sender window (N=4) sender receiver
EPEl256738 send pktO
EPX]4 5678 send pktl \ _
kt0, send ackO
FEBE4 5678 send pkt2- receive pxty,
EPEl4 5678 send pkt3 TXioss receive pktl, send ackl

(wait) receive pkt3, discard,
ofEEMls678 rcv ack0, send pkt4 (re)send ackl

0 1EE¥Is 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ack1l
receive pkt5, discard,
(re)send ackl

ignore duplicate ACK

pkt 2 timeout _

0 1EEE]6 7 8 send pkt2
0 1EEEE6 7 8 send pkt3 \ _
K] 2 3 4 5[RA: send pkt4 rcv pkt2, deliver, send ack2

0 1BE¥Els 7 8 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 11

Selective repeat

+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt
+ sender window

= N consecutive seq # s
" limits seq #s of sent, unACKed pkts

Applet: http://media.pearsoncmg.com/aw/aw_kurose_network_3/applets/SelectRepeat/SR.html

Transport Layer 12

Selective repeat: sender, receiver windows

send_base hextsegnhum dlready Usable. rot
: ack’ed yet sent
(U000 ETIETACTITTI0N I e
t _ window size —4
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but (within window)
already ack’ed

ﬂﬂﬂl]ﬂﬂ[lﬂﬂIIHIIIIIIIIII[IIIII el R

t _ window size—24

1 N

rcv_base

(b) receiver view of sequence numbers

Transport Layer 13

Selective repeat

— sender — receiver
data from above: Pl(t N IN [rcvbase, revbase+N-1]
< if next available seq # in + send ACK(n)
window, send pkt + out-of-order: buffer
timeout(n): + in-order: deliver (also
» resend pkt n, restart deliver buffered, in-order
timer pkts), advance window to

next not-yet-received pkt
ACK(n) iN [sendbase,sendbase+N]: Y P

» mark pkt n as received Pkt N in [revbase-Norevbase-1]

% if n smallest unACKed * ACK(I?)
pkt, advance window base otherwise:
to next unACKed seq # + ignore

>

Transport Layer 14

Selective repeat in action

sender window (N=4) sender receiver

EPEl:56758 send pkt0

[EPE]4 56738 send pktl \ receive pkt0, send ackO
EPEl25678 send pkt2- . !

IEEE 45673 send pkt3 T~Xloss receive pktl, send ackl
] (wait)

receive pkt3, buffer,
okZEEA56 78 rcv ackO, send pkt4 send ack3

0 1PEE678 rcv ackl, send pkt5 receive pkt4, buffer

send ack4

_record ack3 artived receive pkt5, buffer,

= _ n Kk

pkt 2 timeout send ack>
R] 2 3 4 5[RA: send pkt2
0 1-6 78 record ack4 arrived rev pkt2; deliver pkt2
0 1P RN6 7 8 : ’ /
0 16 - record ack5 arrived / pkt3, pkt4, pkt5; send ack?

Q: what happens when ack2 arrives?

Transport Layer 15

sender window receiver window

Se I ective I‘epeat: (after receipt) (after receipt)
dilemma EE:012 k0

kt3
< window size=3 0 1EEId1 2 —

< receiver sees no (a) no problem

difference in two y or i

‘el receiver can’t see sender side.
Scen.arlos' receiver behavior identical in both cases!
dupllcate data something’s (very) wrong!

accepted as new in

——— will accept packet
with seq number 0

3012\K — ofEEl0 12

. LEF)3 012 —pkt2 01-12

exampl’e. 7 %
» seq# s:0,1,2,3 oFIERI0 1 2 T

between seq # size 0122

and window size to timeout
retransmlt pktO

avoid problem in (b)!? [ERs012 —RKO

—, will accept packet

(b) K012 —RKO
K 0 12 \D\ — ofIEEo 12
Q: what relationship 3012 0 1EEIY 1 2

A: window size must be less than (b) oops! " with seq number 0

or equal to half the size of the
sequence number space

Transport Layer 16

Observations

+ With sliding windows, it is possible to fully utilize
a link (or path), provided the window size is large
enough. Throughput is ~ (n/RTT)

= Stop & Wait is like n = 1.
% Sender has to buffer all unacknowledged packets,
because they may require retransmission

+ Receiver may be able to accept out-of-order
packets, but only up to its buffer limits

+ Implementation complexity depends on protocol
details (GBN vs. SR)

Transport Layer

17

RecaE: components of a solution

% Checksums (for error detection)
+» Timers (for loss detection)

% Acknowledgments
= cumulative
= selective

% Sequence numbers (duplicates, windows)
+ Sliding Windows (for efficiency)

+ Reliability protocols use the above to decide
when and what to retransmit or acknowledge

Transport Layer 18

Quiz: GBN vs. SR ?

% Which of the following is not true!

A. GBN uses cumulative ACKs, SR uses individual
ACKs

B. Both GBN and SR use timeouts to address
packet loss

c. GBN maintains a separate timer for each
outstanding packet

D. SR maintains a separate timer for each
outstanding packet

E. Neither GBN nor SR use NACKSs

Transport Layer 19

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.) 20

Practical Reliability Questions

+» How do the sender and receiver keep track of
outstanding pipelined segments!?

< How many segments should be pipelined?
+ How do we choose sequence numbers!?

<+ VWWhat does connection establishment and teardown
look like?

<+ How should we choose timeout values?

Transport Layer (contd.) 21

TCP: Overview Recs: 79311221323, 2018, 2581

R/
0’0

L)

*

point-to-point:

" one sender, one receiver
reliable, in-order byte
steam:

" no “message
. 14
boundaries

pipelined:

= TCP congestion and flow
control set window size

send and receive
buffers

< full duplex data:

= bi-directional data flow
in same connection

= MSS: maximum segment
size
< cohnhection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer (contd.) 22

TCP sesment structure

N

URG: urgent data
(generally not used)\

source port #

32 bits >

dest port # counting

ACK: ACK #

. sequence number

by bytes
of data

valid

\Q\Ignowledgement number

(not segments!)

PSH: push data now
(generally not used) ——

o ggﬁa

S

F

receive window

7

bytes

Urg data pointer revr willing

RST, SYN, FIN— |
connection estab

op/% (variable length)

to accept

(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer (contd.) 23

TCP segment structure

32 bits

20 Bytes

(UDP was 8)

<
<

source port #

dest port #

sequence number

acknowledgement number

len

head|not

used UA|P|RSF receive window

checksum Urg data pointer

options (variable length)

application
data
(variable length)

Transport Layer (contd.)

24

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.) 25

Recall: Components of a solution for

reliable transport

% Checksums (for error detection)
% Timers (for loss detection)

% Acknowledgments

= cumulative
= selective

% Sequence numbers (duplicates, windows)
< Sliding Windows (for efficiency)

" Go-Back-N (GBN)

= Selective Replay (SR)

Transport Layer (contd.) 26

What does TCP do?

Many of our previous ideas, but some key
differences
% Checksum

Transport Layer (contd.) 27

TCP Header

Computed
over header
and data

Source port

Destination port

Sequence number

Acknowledgment

Heren‘ 0 ‘ Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

Transport Layer (contd.)

28

What does TCP do?

Many of our previous ideas, but some key
differences

% Checksum
+ Sequence numbers are byte offsets

Transport Layer (contd.) 29

TCP “Stream of Bytes” Service ..

Application @ Host A

< “<
H t—P
—_ UJ

AN

(4 11{8

08 A9

|| o| o
<L LI =
erererer ,_,,
O»—‘t\)w 0

S

Application @ Host B

Transport Layer (contd.) 30

.. Provided Using TCP “Segments”

Host A
plelsly | | |z
Y vy v Segment sent when:
TCP Data < I. Segment full (Max Segment Size),
2. Not full, but times out
TCP Data
Host B
SEEETTTE

Transport Layer (contd.) 31

TCP Segment

IP Data

TCP Data (segment) TCP Hdr [} IP Hdr

% |P packet
* No bigger than Maximum Transmission Unit (MTU)
" E.g., up to 1500 bytes with Ethernet
+» TCP packet
" |P packet with a TCP header and data inside
= TCP header = 20 bytes long

+» TCP segment
* No more than Maximum Segment Size (MSS) bytes

" E.g., up to 1460 consecutive bytes from the stream
= MSS = MTU — (IP header) — (TCP header)

Transport Layer (contd.) 32

Seqguence Numbers

ISN (initial sequence number)

K bytes
<——>

Host A 2 ‘

Sequence number
= | byte in segment =
ISN + k

Transport Layer (contd.) 33

Sequence Numbers

ISN (initial sequence number)

K
<—>

Host A

Sequence number
= | byte in segment =
ISN + k

Host B

VvVVYyY

A

TCP Data

TCP
HDR

TCP
TCP Data HDR

ACK sequence number
= next expected byte
= seqgno + length(data)

Transport Layer (contd.) 34

What does TCP do?

Most of our previous tricks, but a few differences

+ Receiver sends cumulative acknowledgements (like GBN)

Transport Layer (contd.) 35

ACKing and Sequence Numbers

« Sender sends packet
= Data starts with sequence number X
= Packet contains B bytes [X, X+1, X+2,X+B-1]

« Upon receipt of packet, receiver sends an ACK
If all data prior to X already received:
- ACK acknowledges X+B (because that is next expected byte)
= If highest in-order byte received is Y s.t. (Y+1) < X
- ACK acknowledges Y+1
- Even if this has been ACKed before

Transport Layer (contd.) 36

Normal Pattern

+ Sender: seqno=X, length=B

% Receiver: ACK=X+B

+ Sender: seqno=X+B, length=B
% Receiver: ACK=X+2B

% Sender: seqno=X+2B, length=B

% Segno of next packet is same as last ACK field

Transport Layer (contd.) 37

Packet Loss

+ Sender: seqno=X, length=B
» Receiver: ACK=X+B

+ Sender: seqre=>cHBtergth=B LOST

% Sender: seqno=X+2B, length=B
% Receiver: ACK = X+B

Transport Layer (contd.) 38

TCP Header

Acknowledgment
gives segno just
beyond highest

(“What Byte
is Next”)

seqgno received in
order —

Source port

Destination port

Sequence number

/

—

I Acknowledgment R
HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Transport Layer (contd.)

39

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numberS'

"byte stream number of
first byte in segment’ s
data

acknowledgements:

"seq # of next byte
expected from other side

= cumulative ACK

source port #

sequence number

acknowledgement number

dest port #

rwnd

checksum

urg pointer

wmdow SI
N —

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed but not usable

(“in- yet sent

flight™)

incoming segment to sender
source port # dest port #

sequence number

- acknowledgement number

A rwnd

checksum urg pointer

Transport Layer (contd.) 40

Piggybacking

+ So far, we’ve assumed
distinct “sender’ and
“receiver’ roles

<+ In reality, usually both

sides of a connection
send some data

Client

eqUeSt

f

(O8

\’\esponse

i

AC

eQUeSt

i

pCK

?\espoﬂse

\

Server Client

Without
Piggybacking

ReqUGSt

ACK
’y
Re
qu
&\

K
ACK

)yﬂse*

With
Piggybacking

Transport Layer (contd.) 41

Server

Transport Layer (contd.) 42

What does TCP do?

Most of our previous tricks, but a few differences

+ Receivers can buffer out-of-sequence packets (like SR)

Transport Layer (contd.) 43

Loss with cumulative ACKs

% Sender sends packets with 100B and segnos.:
= |00, 200, 300, 400, 500, 600, 700, 800, 900, ...

+» Assume the fifth packet (seqno 500) is lost,
but no others

< Stream of ACKs will be:
= 200, 300, 400, 500, 500, 500, 500,...

Transport Layer (contd.) 44

What does TCP do?

Most of our previous tricks, but a few differences

+ Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

Transport Layer (contd.) 45

TCP round trip time, timeout

Q: how to set TCP
timeout value?

+ longer than RTT
= but RTT varies
- too short: premature

timeout, unnecessary
retransmissions

4

L)

L)

&

)

» too long: slow reaction
to segment loss and
connection has lower
throughput

Q: how to estimate RTT?
» SampleRTT: measured

time from segment
transmission until ACK
receipt

" jgnore retransmissions

» SampleRTT will vary, want

estimated RTT “smoother”

" average several recent
measurements, not just
current SampleRTT

Transport Layer (contd.) 46

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT

+» exponential weighted moving average
% influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 ~

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

1 T N\{Tm

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer (contd.) 4/

TCP round trip time, timeout

% timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-f) *DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, P = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Practice Problem:
http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html

Transport Layer (contd.) 48

Why exclude retransmissions in RTT
computation?

+ How do we differentiate between the real ACK, and ACK of
the retransmitted packet?

Sender Receiver Sender Receiver
Orio; Orio;
nal ;. nal T;
aQ . ra .
pCK
a .)

— ”anlss,bn SampleRTT , nsm’SSion
|_
o
o
[a R
£ ACK
[}
(%) Y

Transport Layer (contd.) 49

TCP sender events:

data rcvd from app:

’0

» create segment with
seq #

% seq # is byte-stream

number of first data

byte in segment

< start timer if not
already running

= think of timer as for
oldest unacked
segment

= expiration interval:
TimeOutInterval

PUTTING IT
TOGETHER

timeout;

% retransmit segment
that caused timeout

< restart timer
ack revd:

+ if ack acknowledges
previously unacked
segments

= update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer (contd.)

50

TCP sender (simplified) "TOGETHER

data received from application above

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

Ta start timer
NextSegNum = InitialSeqNum
SendBase = InitialSeqgNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer (contd.) 51

TCP: retransmission scenarios

< timeout —

Hos

Seq=92, 8 bytes of data
/
ACK=100
X

Seq=92, 8 bytes of data

/

ACK=100

/

t

lost ACK scenario

B

> =

H

e ——

SendBase=92

SendBase=100
SendBase=120

SendBase=120

< timeout —

ost A

/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACK=1 o/

ACK=120

/

Seq=92, 8

bytes of data\

\

ACK=120

\

premature timeout

Transport Layer (contd.)

Host B

B

52

TCP: retransmission scenarios

Host A Hos

g | -

==

\

Seq=92, 8 bytes of data
\

Seq=100, 20 bytes of da

ACK=100
X

ACK=120

/

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer (contd.)

53

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer (contd.) 54

What does TCP do?

Most of our previous tricks, but a few differences

» Receivers may not drop out-of-sequence packets (like SR)
- Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

» Introduces fast retransmit: optimisation that uses duplicate
ACKSs to trigger early retransmission

55

TCP fast retransmit

% time-out period often

relatively long: —- TCP fast retransmit —
. Irzrs\gnddeilnay Ilcjaiioraecket it sender receives 3
| [esending 1os- pac duplicate ACKs for
+ “Duplicate ACKs” are a | .;me data

sign of an isolated loss

* The lack of ACK
progress means that
packet hasn’t been

(“triple duplicate ACKs"),
resend unacked
segment with smallest

delivered seq #

= Stream of ACKs means " |ikely that unacked
some packets are being segment is lost, so
delivered don’ t wait for timeout

* Could trigger resend on
receiving “k” duplicate
ACKS (TCP uses k — 3) Transport Layer (contd.) 56

TCP fast retransmit

Host A Host B

= | -

— Seq=92, 8 bytes of data

Seq= 100,‘20‘07%
\X

|_ACK=100

timeout

/
_ACK=100
TSeq=100, 20 bytes of data

A 4

v v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer (contd.) 57

What does TCP do?

Most of our previous ideas, but some key
differences

» Checksum

- Sequence numbers are byte offsets

» Receiver sends cumulative acknowledgements (like GBN)
» Receivers do not drop out-of-sequence packets (like SR)

» Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

» Introduces fast retransmit: optimization that uses duplicate
ACKSs to trigger early retransmission

Transport Layer (contd.) 58

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.) 59

TCP flow control

application may
remove data from
TCP socket buffers

... Slower than TCP
receiver is delivering
(sender is sending)

flow control
receiver controls sender, so

sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

application
process

application

TCP socket
receiver buffers
|

TCP
code

IP
code

I 1 Vv
I |
from sender |

receiver protocol stack

Transport Layer (contd.) 60

TCP flow control

/
0’0

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RevBuffer size set via
socket options (typical default

is 4096 bytes)
" many operating systems
autoadjust RcvBuffer
sender Iimits amount of
unacked (in-flight”) data to
receiver s rwnd value

guarantees receive buffer
will not overflow

to application process

r‘l‘_‘

T
RcvBuffer

!

rwn
Iy

buffered data

free buffer space

1

TCP segment payloads

receiver-side buffering

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/flow/FlowControl.htm

Transport Layer (contd.)

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.) 62

Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

< agree on connection parameters

application application

I

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

ZV/ network network
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer (contd.) 63

Initial Sequence Number (ISN)

» Sequence number for the very first byte
+~ Why not just use ISN = 07?

» Practical issue
» |P addresses and port #s uniquely identify a connection
= Eventually, though, these port #s do get used again
= ... small chance an old packet is still in flight
= Easy to hijack a TCP connection (security threat)

» TCP therefore requires changing ISN

» Hosts exchange ISNs when they establish a

con neCtlon Transport Layer (contd.) 64

Agreeing to establish a connection

2-way handshake:

o . Q: will 2-way handshake
G CaH always work in
g\r’ 54

- T network!?

Let’ s talk .
T ESTAB + variable delays
— OK .
ESTAB + retransmitted messages

(e.g. req_conn(x)) due to
message loss

+» message reordering
¢ > ” é ” .
choose x ~Rq_conn(9 & can t see other side
—® ESTAB

acc_conn(x)
ESTAB &—

Transport Layer (contd.) 65

Agreeing to establish a connection

2-way handshake failure scenarios:

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(&

A ESTAB

acc_conn(x)

req_conn(x)

\

_connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

req_conn(x)

choose x

retransmit

ESTAB

retransmit
data(x+1)

=

e

=

\req_conn(>_<L‘

acc_conn(x)

\data(x+ 1L~
™~

connection

client
terminates

~ 7 x completes

\
req_conn(x)

data(x+1)

% ESTAB

accept
data(x+1)

server
forgets x

ESTAB

accept
data(x+1)

Transport Layer (contd.) 66

TCP 3-way handshake

client state

CLOSED

choose init seq num, x
send TCP SYN msg
SYNSENT

v

received SYNACK(x)
ESTAB

indicates server is live;
send ACK for SYNACK;
this segment may contain
client-to-server data

Jda-

SYNbit=1, Seq=x

_—

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

/\

ACKbit=1, ACKnum=y+1
\

server state

LISTEN

choose init seq num, y
send TCP SYNACK

msg, acking SYN SYN RCVD
received ACK(y)
indicates client is live v
ESTAB

Transport Layer (contd.) 67

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A .
Socket clientSocket =
SYN (X) v newSocket ("hostname", "port
SYNACK(seq=y,ACKnum=x+1) number?) ;
create new socket for SYN(seq=x)
communication back to client
1 ,,
‘ ‘ SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y-1) ACK(ACKnum=y+1)

A

Transport Layer (contd.) 68

Step 1: A’ s Initial SYN Packet

A's port B's port

A's Initial Sequence Number

Fla s:@\ _
J (Irrelevant since ACK not set)

ACK — T

FIN 5 [0 Flags |) Advertised window
RST

PSH Checksum Urgent pointer
URG _QOptieris(variable)

A tells B it wants to open a connection...

Transport Layer (contd.)

Step 2: B's SYN-ACK Packet

B’ s port A’ s port
B’ s Initial Sequence Number
Flags: — T
(> C_ ACK=A'sISNplus1 D
— —
FIN 5 | o Flags) Advertised window
RST S~
PSH Checksum Urgent pointer
URG _Opticris (variable)

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data
Transport Layer (contd.) 70

Step 3: A’ s ACK of the SYN-ACK

A’ s port B’ s port

A’ s Initial Sequence Number+1

—

——

. —— o~
Flags: Seo—L B’s ISN plus 1 D

FIN S 0 | Flags | Advertised window
RST

PSH Checksum Urgent pointer
URG _Opticris (variable)

A tells B it’ s likewise okay to start sending

.. upon receiving this packet, B can start Se%%!ﬂr age?z:c%ntd) -

What if the SYN Packet Gets Lost?

+» Suppose the SYN packet gets lost
= Packet is lost inside the network, or:
= Server discards the packet (e.g., it's too busy)

+» Eventually, no SYN-ACK arrives
= Sender sets a timer and waits for the SYN-ACK
= .. and retransmits the SYN if needed

+» How should the TCP sender set the timer?
= Sender has no idea how far away the receiver is

* Hard to guess a reasonable length of time to wait
= SHOULD (RFCs 1122 & 2988) use default of 3 seconds

« Some implementations instead use 6 seconds

Transport Layer (contd.) 72

SYN Loss and Web Downloads

+ User clicks on a hypertext link
» Browser creates a socket and does a “connect”
*= The “connect” triggers the OS to transmit a SYN

« |fthe SYN is lost...

= 3-6 seconds of delay: can be very long
= User may become impatient
= ... and click the hyperlink again, or click “reload”

» User triggers an “abort” of the “connect”
= Browser creates a new socket and another “connect”

= Essentially, forces a faster send of a new SYN packet!
= Sometimes very effective, and the page comes quickly

Transport Layer (contd.)

73

TCP: closing a connection

+ client, server each close their side of connection
= send TCP segment with FIN bit = |

% respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own FIN
<+ simultaneous FIN exchanges can be handled

Transport Layer (contd.) 74

N

A

client state
ESTAB

clientSocket.close ()

FIN WAIT _1 can no longer

send but can
l receive data

FIN WAIT 2 wait for server
T - close
TIMED_WAIT —.
timed wait
for 2*max
segment lifetime
CLOSED l

& |

T Fibit=1
it=1, Seq=X\’
/
ACKbit=1; ACKnum=x+1
—

/
A/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
~——

TIMED_WAIT: Can retransmit ACK if ACK is lost

can still
send data

can no longer
send data

Transport Layer (contd.)

ormal Termination, One at a Time

server state
ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

75

Normal Termination, Both Together

client state

ESTAB s E

clientSocket.close ()

FIN WAIT _1 can no longer
send but can
receive data

wait for server
TIMED_ WAIT __close

timed wait
for 2*max
segment lifetime

CLOSED J,

—~—

T FiRbit=1
it=1, Seq=X\’

/
ACKbit=1; ACKnum=x+1

“~FINbit= 1, seq=y

ACKbit=1; ACKnum=y+1
\

FIN + ACK
together

can no longer
send data

server state

ESTAB

|

CLOSE_WAIT
v
LAST_ACK

v

CLOSED

Transport Layer (contd.) 76

Abrupt Termination

ered
RST

B
192
TR A
2 %QCU A &
W o0 O
A
>

time

A sends a RESET (RST) to B
= E.g., because application process on A crashed
That’s it
B does not ack the RST
Thus, RST is not delivered reliably
And: any data in flight is lost
But: if B sends anything more, will elicit another RST

Transport Layer (contd.)

77

TCP Finite State Machine

CLOSED
A

Active open /SYN
Passive open Close
Close
Y
LISTEN
SYN/SYN + ACK Send SYN

SYN_RCVD |= SYN/SYN + ACK SYN_SENT
ACK SYN + ACK/ACK
Close/FIN ESTABLISHED |<
\i Close/FIN FIN/ACK
FIN_WAIT_1 CLOSE_WAIT
<~ FIN/ACK
ACK F \ Close/FIN
Y \
FIN_WAIT_2 CLOSING LAST_ACK
A e A iy yACK
FIN/ACK 9 !
TIME_WAIT ~ CLOSED

Data, ACK
exchanges
are in here

Transport Layer (contd.)

78

TCP Connection Management (cont)

wait 30 seconds

[

CLOSED

TIME_WAIT

b

receive FIN
send ACK

FIN_WAIT_2

%

\
\

receive ACK
send nathing

TCP client

lifecycle

client application
initiates a TCP connection

send SYN

SYN_SENT

receive SYN & ACK
send ACK

4

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIN CLOSED

receive ACK
send nothing

[

LAST_ACK
A

send FIN

CLOSE_WAIT

Q

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYN
send SYN & ACK

A 4

SYN_RCVD

receive FN ESTABLISHED

send ACK

receive ACK
send nothing

Transport Layer (contd.)

79

TCP SYN Attack (SYN flooding)

Miscreant creates a fake SYN packet
= Destination is |P address of victim host (usually some server)
= Source is some spoofed IP address

Victim host on receiving creates a TCP connection state i.e allocates buffers,
creates variables, etc and sends SYN ACK to the spoofed address (half-open
connection)

ACK never comes back
After a timeout connection state is freed
However for this duration the connection state is unnecessarily created

Further miscreant sends large number of fake SYNs
= Can easily overwhelm the victim
Solutions:
" [ncrease size of connection queue
= Decrease timeout wait for the 3-way handshake
= Firewalls: list of known bad source IP addresses
= TCP SYN Cookies (explained on next slide)

Transport Layer (contd.)

80

TCP SYN Cookie

% On receipt of SYN, server does not create connection
state

% It creates an initial sequence number (init_seq) that is a
hash of source & dest |IP address and port number of SYN
packet (secret key used for hash)

= Replies back with SYN ACK containing init_seq
= Server does not need to store this sequence number

+ If original SYN is genuine, an ACK will come back

= Same hash function run on the same header fields to get the initial
sequence number (init_seq)

" Checks if the ACK is equal to (init_seq+1)
= Only create connection state if above is true

+ If fake SYN, no harm done since no state was created

http://etherealmind.com/tcp-syn-cookies-ddos-defence/

Transport Layer (contd.) 81

Taking Stock (|

% The concepts underlying TCP are simple
" acknowledgments (feedback)
" timers
" sliding windows
" buffer management
" sequence numbers

Transport Layer (contd.) 82

Taking Stock (2

< [he

concepts underlying TCP are simple

% But tricky in the details
= How do we set timers!

=W
=W
=W

hat is the segno for an ACK-only packet!?
nat happens if advertised window = 0?

nhat if the advertised window is 2 an MSS?

" Should receiver acknowledge packets right away?

" What if the application generates data in units of 0.1
MSS?

" What happens if | get a duplicate SYN? Or a RST while
I'm in FIN_WAIT, etc,, etc., etc.

Transport Layer (contd.) 83

Transport: summary (so far)

< principles behind
transport layer services:
" multiplexing,
demultiplexing
= reliable data transfer
= flow control

" congestion control
(next week)

« Instantiation,
implementation in the
Internet
= UDP
= TCP

next:

+ leaving the
network
“edge” (application
, transport layers)

< into the network
114 7
core

Transport Layer (contd.) 84

Mid-semester Exam

29th Aug (Mon, Week 6), regular lecture hours (4-6pm)
Various rooms - check webpage for your room
Exam will run for 90 minutes
Check dedicated page on the course website
Sample exam provided
Content

" Topics covered in Week | -5 Lectures

= Chapter I, 2 and 3 (3.1-3.5) from textbook

= All self-study sections are included

= The external references (papers, links, etc.) are NOT included

Closed book

No laptops, tablets, phone, electronic devices, ...

BYO Calculator

Discussions on forum encouraged

Good luck Transport Layer 55

