
COMP1917: 08 Pointers and Functions

Sim Mautner

s.mautner@unsw.edu.au

August 15, 2016

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions August 15, 2016 1 / 4



Pointers

All variables are stored at a specific address in the computer’s
memory.

We can store and inspect the address of any variable.

& is used to say “address of”.

Ex 1: Write an application which declares some variables and displays
the variables as well as their addresses.

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions August 15, 2016 2 / 4



Pointers

We can store the “address of” a variable into another variable. The
type of this other variable is a pointer, and depends on the type of
the variable it’s pointing to. (Eg a pointer to an int would be of type
“int pointer” and is written as int *).

Ex 2: Write an application which declares some variables, declares
some variables to hold the addresses of those variables, and then
prints them out.

If we only have a pointer, we can access the “contents of” that
pointer, by dereferencing it.

Ex 3: Adapt Ex 2 to use an approach of dereferencing the pointers.

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions August 15, 2016 3 / 4



Functions: Pass by Value, Pass by Reference

When passing parameters into a function, we cannot change the value
of the original variable.

If we want to change the value of the original variable, we can do this
by passing in the address of the variable (or a pointer to the variable).

Ex 4: Write a void function (and an application to use it) which
takes in a pointer to an int, and multiplies the value by 2.

This approach is useful if we want a function to effectively have more
than one return value. (Note: it still has only a maximum of 1 return
value, but by changing the value of parameters, more information can
be passed back to the function which called.)

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions August 15, 2016 4 / 4


