COMP1917: 08 Pointers and Functions

Sim Mautner

s.mautner@unsw.edu.au

August 15, 2016

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions



Pointers

@ All variables are stored at a specific address in the computer's
memory.

@ We can store and inspect the address of any variable.
@ & is used to say “address of".

@ Ex 1: Write an application which declares some variables and displays
the variables as well as their addresses.

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions August 15, 2016 2/4



Pointers

@ We can store the “address of” a variable into another variable. The
type of this other variable is a pointer, and depends on the type of
the variable it's pointing to. (Eg a pointer to an int would be of type
“int pointer” and is written as int *).

@ Ex 2: Write an application which declares some variables, declares
some variables to hold the addresses of those variables, and then
prints them out.

o If we only have a pointer, we can access the “contents of” that
pointer, by dereferencing it.

@ Ex 3: Adapt Ex 2 to use an approach of dereferencing the pointers.

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions August 15, 2016 3/4



Functions: Pass by Value, Pass by Reference

@ When passing parameters into a function, we cannot change the value
of the original variable.

o If we want to change the value of the original variable, we can do this
by passing in the address of the variable (or a pointer to the variable).

e Ex 4: Write a void function (and an application to use it) which
takes in a pointer to an int, and multiplies the value by 2.

@ This approach is useful if we want a function to effectively have more
than one return value. (Note: it still has only a maximum of 1 return

value, but by changing the value of parameters, more information can
be passed back to the function which called.)

Sim Mautner (UNSW) COMP1917: 08 Pointers and Functions August 15, 2016 4/4



