COMP2111 Week 8
 Term 1, 2019
 Regular languages and beyond

Summary

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

Summary

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

Regular expressions

Regular expressions are a way of describing "finite automaton" patterns:

- Second-last letter is b
- Every odd symbol is b

Many applications in CS:

- Lexical analysis in compiler construction
- Search facilities provided by text editors and databases; utilities such as grep and awk
- Programming languages such as Perl and XML

Regular expressions

Given a finite set Σ, a regular expression (RE) over Σ is defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- a is a regular expression for all $a \in \Sigma$
- If E_{1} and E_{2} are regular expressions, then $E_{1} E_{2}$ is a regular expression
- If E_{1} and E_{2} are regular expressions, then $E_{1}+E_{2}$ is a regular expression
- If E is a regular expression, then E^{*} is a regular expression We use parentheses to disambiguate REs, though * binds tighter than concatenation, which binds tighter than + .

Examples

Example

The following are regular expressions over $\Sigma=\{0,1\}$:

- \emptyset
- $101+010$
- $(\epsilon+10)^{*} 01$

Language of a Regular expression

A RE defines a language over Σ : the set of words which "match" the expression:

- Concatenation $=$ sequences of expressions
- Union = choice of expressions
- Star $=0$ or more occurrences of an expression

Example

The following words match $(000+10)^{*} 01$:

- 01
- 101001
- 000101000001

Language of a Regular Expression

Formally, given an RE, E, over Σ, we define $L(E) \subseteq \Sigma^{*}$ recursively as follows:

- If $E=\emptyset$ then $L(E)=\emptyset$
- If $E=\epsilon$ then $L(E)=\{\lambda\}$
- If $E=a$ where $a \in \Sigma$ then $L(E)=\{a\}$
- If $E=E_{1} E_{2}$, then $L(E)=L\left(E_{1}\right) \cdot L\left(E_{2}\right)$
- If $E=E_{1}+E_{2}$, then $L(E)=L\left(E_{1}\right) \cup L\left(E_{2}\right)$
- If $E=E_{1}^{*}$ then $L(E)=\left(L\left(E_{1}\right)\right)^{*}$

Example

$$
\begin{aligned}
& L(010+101)=? \\
& L\left((\epsilon+10)^{*} 01\right)=?
\end{aligned}
$$

Language of a Regular Expression

Formally, given an RE, E, over Σ, we define $L(E) \subseteq \Sigma^{*}$ recursively as follows:

- If $E=\emptyset$ then $L(E)=\emptyset$
- If $E=\epsilon$ then $L(E)=\{\lambda\}$
- If $E=a$ where $a \in \Sigma$ then $L(E)=\{a\}$
- If $E=E_{1} E_{2}$, then $L(E)=L\left(E_{1}\right) \cdot L\left(E_{2}\right)$
- If $E=E_{1}+E_{2}$, then $L(E)=L\left(E_{1}\right) \cup L\left(E_{2}\right)$
- If $E=E_{1}^{*}$ then $L(E)=\left(L\left(E_{1}\right)\right)^{*}$

Example

$$
\begin{gathered}
L(010+101)=\{010,101\} \\
L\left((\epsilon+10)^{*} 01\right)=?
\end{gathered}
$$

Language of a Regular Expression

Formally, given an RE, E, over Σ, we define $L(E) \subseteq \Sigma^{*}$ recursively as follows:

- If $E=\emptyset$ then $L(E)=\emptyset$
- If $E=\epsilon$ then $L(E)=\{\lambda\}$
- If $E=a$ where $a \in \Sigma$ then $L(E)=\{a\}$
- If $E=E_{1} E_{2}$, then $L(E)=L\left(E_{1}\right) \cdot L\left(E_{2}\right)$
- If $E=E_{1}+E_{2}$, then $L(E)=L\left(E_{1}\right) \cup L\left(E_{2}\right)$
- If $E=E_{1}^{*}$ then $L(E)=\left(L\left(E_{1}\right)\right)^{*}$

Example

$$
\begin{gathered}
L(010+101)=\{010,101\} \\
L\left((\epsilon+10)^{*} 01\right)=\{01,1001,101001, \ldots\}
\end{gathered}
$$

Regular expressionss vs NfAs

Theorem (Kleene's theorem)

- For any regular expression $E, L(E)$ is a regular language.
- For any regular language L, there is a regular expression E such that $L=L(E)$

Proof of Kleene's theorem

Given $E, L(E)$ is a regular language. Proof by induction on E.

Proof of Kleene's theorem

Given $E, L(E)$ is a regular language. Proof by induction on E.
Given L, find E such that $L=L(E)$

Proof of Kleene's theorem

Given $E, L(E)$ is a regular language. Proof by induction on E.
Given L, find E such that $L=L(E)$

- Let
$L_{q, q^{\prime}}^{X}=\left\{w \in \Sigma^{*}: q{ }^{w}{ }^{*} q^{\prime}\right.$ with all intermediate states in $\left.X\right\}$

Proof of Kleene's theorem

Given $E, L(E)$ is a regular language. Proof by induction on E.
Given L, find E such that $L=L(E)$

- Let
$L_{q, q^{\prime}}^{X}=\left\{w \in \Sigma^{*}: q{ }^{w}{ }^{*} q^{\prime}\right.$ with all intermediate states in $\left.X\right\}$
- Define $E_{q, q^{\prime}}^{X}$ such that $L\left(E_{q, q^{\prime}}^{X}\right)=L_{q, q^{\prime}}^{X}$:
- When $q=q^{\prime}: E_{q, q^{\prime}}^{\emptyset}=\epsilon+a_{1}+a_{2}+\ldots+a_{k}$ where $q \xrightarrow{a_{i}} q$
- When $q \neq q^{\prime}: E_{q, q^{\prime}}^{\emptyset}=\emptyset+a_{1}+a_{2}+\ldots+a_{k}$ where $q \xrightarrow{a_{i}} q^{\prime}$
- For $X \neq \emptyset$:

$$
E_{q, q^{\prime}}^{X}=\underbrace{E_{q, q^{\prime}}^{X-\{r\}}}_{(1)}+\underbrace{E_{q, r}^{X-\{r\}} \cdot\left(E_{r, r}^{X-\{r\}}\right)^{*} \cdot E_{r, q^{\prime}}^{X-\{r\}}}_{(2)}
$$

Proof of Kleene's theorem

Given $E, L(E)$ is a regular language. Proof by induction on E.
Given L, find E such that $L=L(E)$

- Let
$L_{q, q^{\prime}}^{X}=\left\{w \in \Sigma^{*}: q{ }^{w}{ }^{*} q^{\prime}\right.$ with all intermediate states in $\left.X\right\}$
- Define $E_{q, q^{\prime}}^{X}$ such that $L\left(E_{q, q^{\prime}}^{X}\right)=L_{q, q^{\prime}}^{X}$:
- When $q=q^{\prime}: E_{q, q^{\prime}}^{\emptyset}=\epsilon+a_{1}+a_{2}+\ldots+a_{k}$ where $q \xrightarrow{a_{i}} q$
- When $q \neq q^{\prime}: E_{q, q^{\prime}}^{\emptyset}=\emptyset+a_{1}+a_{2}+\ldots+a_{k}$ where $q \xrightarrow{a_{i}} q^{\prime}$
- For $X \neq \emptyset$:

$$
E_{q, q^{\prime}}^{X}=\underbrace{E_{q, q^{\prime}}^{X-\{r\}}}_{(1)}+\underbrace{E_{q, r}^{X-\{r\}} \cdot\left(E_{r, r}^{X-\{r\}}\right)^{*} \cdot E_{r, q^{\prime}}^{X-\{r\}}}_{(2)}
$$

- The required expression is then $E=\sum_{q \in F} E_{q_{0}, q}^{Q}$

Example

Example

Construct an NFA for $(\epsilon+0)^{*} 1$

Example

Example

Construct an NFA for $(\epsilon+0)^{*} 1$

Example

Example

Find a regular expression for this NFA:

Example (ctd)

Example

Picking c as the separating state:

$$
E_{a, a}^{\{a, b, c\}}=E_{a, a}^{\{a, b\}}+E_{a, c}^{\{a, b\}} \cdot\left(E_{c, c}^{\{a, b\}}\right)^{*} \cdot E_{c, a}^{\{a, b\}}
$$

By inspection $E_{a, a}^{\{a, b\}}=\epsilon, \quad E_{a, c}^{\{a, b\}}=10^{*} 1 \quad$ and $\quad E_{c, a}^{\{a, b\}}=1$.
Now picking b as the separating state:

$$
E_{c, c}^{\{a, b\}}=E_{c, c}^{\{a\}}+E_{c, b}^{\{a\}} \cdot\left(E_{b, b}^{\{a\}}\right)^{*} \cdot E_{b, c}^{\{a\}}
$$

where $E_{c, c}^{\{a\}}=\epsilon, \quad E_{c, b}^{\{a\}}=0+11, \quad E_{b, b}^{\{a\}}=\epsilon+0 \quad$ and $\quad E_{b, c}^{\{a\}}=1$.
Putting it all together we have

$$
E_{a, a}^{\{a, b, c\}}=\epsilon+10^{*} 1\left(\epsilon+(0+11)(\epsilon+0)^{*} 1\right)^{*} 1
$$

Summary

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

L-indistinguishability

Let $x, y \in \Sigma^{*}$ and let $L \subseteq \Sigma^{*}$.
We say that x and y are L-indistinguishable, written $x \equiv_{L} y$, if for every $z \in \Sigma^{*}$,

$$
x z \in L \quad \text { if and only if } y z \in L
$$

L-indistinguishability

Let $x, y \in \Sigma^{*}$ and let $L \subseteq \Sigma^{*}$.
We say that x and y are L-indistinguishable, written $x \equiv_{L} y$, if for every $z \in \Sigma^{*}$,

$$
x z \in L \quad \text { if and only if } y z \in L
$$

Fact

\equiv_{L} is an equivalence relation.
We define the index of L to be the number of equivalence classes of \equiv .

NB

The index of L may be finite or infinite.

Examples

Example

Take $\Sigma=\{0,1\}$.

$$
L_{1}=\{w: w \text { has even length }\}
$$

$$
u \equiv L_{1} v \text { iff length }(u) \equiv \text { length }(v)(\bmod 2)
$$

Now $\equiv L_{1}$ has two equivalence classes:
$[\epsilon]=[00]=[10]=\cdots=\{w$: length (w) even $\}$ and $[0]=[1]=[010]=[110]=\cdots=\{w$: length (w) odd $\}$.

Examples

Example

Take $\Sigma=\{0,1\}$

$$
L_{2}=\{w: w \text { has equal numbers of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
$$

For any $i, j \geq 0$, if $i \neq j$ then $0^{i} \not \equiv L_{2} 0^{j}$ (because $0^{i} 1^{i} \in L_{2}$ but $0^{j} 1^{i} \notin L_{2}$).

Therefore the index of L_{2} is infinite.

Myhill-Nerode theorem

Theorem (Myhill-Nerode theorem)
L is regular if and only if L has finite index.
Moreover, the index is the size (= number of states) of the smallest DFA accepting L.

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?

- An NFA with n states can accept L_{n}

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?

- An NFA with n states can accept L_{n}
- So there is a DFA with 2^{n} states that accepts L_{n}

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?

- An NFA with n states can accept L_{n}
- So there is a DFA with 2^{n} states that accepts L_{n}
- So the index is at most 2^{n}

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?
Take $w, v \in \Sigma^{n}$ with $w \neq v$. Suppose w and v differ in the i-th symbol, $0 \leq i \leq n-1$. Let $z=a^{n-i}$.

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?
Take $w, v \in \Sigma^{n}$ with $w \neq v$. Suppose w and v differ in the i-th symbol, $0 \leq i \leq n-1$. Let $z=a^{n-i}$.

- Then only one of $w z, v z$ is in L_{n}

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?
Take $w, v \in \Sigma^{n}$ with $w \neq v$. Suppose w and v differ in the i-th symbol, $0 \leq i \leq n-1$. Let $z=a^{n-i}$.

- Then only one of $w z, v z$ is in L_{n}
- So w and v are L_{n}-distinguishable ($w \not \equiv L_{n} v$)

Example

Example

Take $\Sigma=\{a, b\}$.

$$
L_{n}=\{w: \text { the } n \text {-th last symbol of } w \text { is } b\}
$$

What is the index of L_{n} ?
Take $w, v \in \Sigma^{n}$ with $w \neq v$. Suppose w and v differ in the i-th symbol, $0 \leq i \leq n-1$. Let $z=a^{n-i}$.

- Then only one of $w z, v z$ is in L_{n}
- So w and v are L_{n}-distinguishable $\left(w \not \equiv L_{n} v\right)$
- So the index is at least 2^{n}

Summary

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

Context-free grammars

Regular languages can be specified in terms of finite automata that accept or reject strings, equivalently, in terms of regular expressions, which strings are to match.
Grammars are a generative means of specifying sets of strings.

Context-free grammars (CFG): A way of generating words

Ingredients of a CFG:
(\{variables\}, \{terminals\}, \{productions (or rules) $\}$, start symbol)
The start symbol is a special variable.
A CFG generates strings over the alphabet $\Sigma=\{$ terminals $\}$.

Example

$G=(\{A, B\},\{0,1\}, \mathcal{R}, A)$ where \mathcal{R} consists of three rules:

$$
\left\{\begin{array}{l}
A \rightarrow 0 A 1 \\
A \rightarrow B \\
B \rightarrow \epsilon
\end{array}\right.
$$

How to generate strings using a CFG

1. Set w to be the start symbol.
2. Choose an occurrence of a variable X in w if any, otherwise STOP.
3. Pick a production whose lhs is X, replace the chosen occurrence of X in w by the rhs.
4. GOTO 2.

Example

$G=(\{A, B\},\{0,1\},\{A \rightarrow 0 A 1 \mid B, \quad B \rightarrow \epsilon\}, A)$ generates $\left\{0^{i} 1^{i}: i \geq 0\right\}$.

$$
\begin{aligned}
A & \Rightarrow 0 A 1 \\
& \Rightarrow 00 A 11 \\
& \Rightarrow 00 B 11 \\
& \Rightarrow 00 \epsilon 11=0^{2} 1^{2}
\end{aligned}
$$

Such sequences are called derivations.

Formal definition

A context-free grammar is a 4-tuple $G=(V, \Sigma, \mathcal{R}, S)$ where

- V is a finite set of variables (or non-terminals)
- Σ (the alphabet) is a finite set of terminals
- \mathcal{R} is a finite set of productions. A production (or rule) is an element of $V \times(V \cup \Sigma)^{*}$, written $A \rightarrow w$.
- $S \in V$ is the start symbol.

We define a binary relation \Rightarrow over $(\{V \cup \Sigma\})^{*}$ by: for each $u, v \in(\{V \cup \Sigma\})^{*}$, for each $A \rightarrow w$ in \mathcal{R}

$$
u A v \Rightarrow u w v
$$

The language generated by the grammar, $L(G)$, is $\left\{w \in \Sigma^{*}: S \Rightarrow^{*} w\right\}$.

A language is context-free if it can be generated by a CFG.

Examples

Example

Well-balanced parentheses: generated by $(\{S\},\{()\},, \mathcal{R}, S)$ where \mathcal{R} consists of

$$
S \rightarrow(S)|S S| \epsilon
$$

E.g. (() (())) ()

Examples

Example

Inductively defined syntax:

- Well-formed formulas
- \mathcal{L}
- Regular expressions

Examples

Example

Inductively defined syntax:

- Well-formed formulas
- \mathcal{L}
- Regular expressions

WFFs: Generated by $(\{\varphi\}, \Sigma, \mathcal{R}, \varphi)$ where
$\Sigma=\operatorname{Prop} \cup\{\top, \perp,(),, \neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$ and \mathcal{R} consists of

$$
\varphi \rightarrow \top|\perp| P|\neg \varphi|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid(\varphi \leftrightarrow \varphi)
$$

Examples

Example

A small English language

$$
\begin{aligned}
&\langle\text { SENTENCE }\rangle \rightarrow \\
&\langle\text { NOUN-PHRASE }\rangle\langle\text { VERB-PHRASE }\rangle \\
&\langle\text { NOUN-PHRASE }\rangle \rightarrow \\
&\langle\text { CMPLX-NOUN }\rangle \mid \text { 〈CMPLX-NOUN }\rangle\langle\text { PREP-PHRASE } \\
&\langle\text { VERB-PHRASE }\rangle \rightarrow \\
&\langle\text { CMPLX-VERB }\rangle \mid \text { CMPLX-VERB }\rangle\langle\text { PREP-PHRASE } \\
&\langle\text { PREP-PHRASE }\rangle \rightarrow \\
&\langle\text { PREP }\rangle\langle\text { CMPLX-NOUN }\rangle \\
&\langle\text { CMPLX-NOUN }\rangle \rightarrow \\
&\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle \\
&\langle\text { CMPLX-VERB }\rangle \rightarrow \\
&\langle\text { VERB }\rangle \mid\langle\text { VERB }\rangle\langle\text { SOUN-PHRASE }\rangle \\
&\langle\text { ARTICLE }\rangle \rightarrow \\
& \text { a } \mid \text { the } \\
&\langle\text { NOUN }\rangle \rightarrow \\
& \text { boy } \mid \text { girl } \mid \text { flower } \\
&\langle\text { VERB }\rangle \rightarrow \\
& \text { touches } \mid \text { like } \mid \text { see }
\end{aligned}
$$

Examples

Example

A small English language

$$
\begin{aligned}
\langle\text { SENTENCE }\rangle & \Rightarrow\langle\text { NOUN-PHRASE }\rangle\langle\text { VERB-PHRASE }\rangle \\
& \Rightarrow\langle\text { CMPLX-NOUN }\rangle\langle\text { PREP-PHRASE }\langle\text { VVRB-PHRASE }\rangle \\
& \Rightarrow\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle\langle\text { PREP-PHRASE }\rangle\langle\text { VERB-PHRASE }\rangle \\
& \Rightarrow \text { a girl }\langle\text { PREP }\rangle\langle\text { CMPLX-NOUN }\rangle\langle\text { VERB-PHRASE }\rangle \\
& \Rightarrow \text { a girl with }\langle\text { CMPLX-NOUN }\rangle \text { VERB-PHRASE }\rangle \\
& \Rightarrow \text { a girl with }\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle\langle\text { VERB-PHRASE }\rangle \\
& \Rightarrow \text { a girl with a flower }\langle\text { VERB-PHRASE }\rangle \\
& \Rightarrow \text { a girl with a flower }\langle\text { CMPLX-VERB }\rangle \\
& \Rightarrow \text { a girl with a flower }\langle\text { VERB }\langle\text { NOUN-PHRASE }\rangle \\
& \Rightarrow \text { a girl with a flower likes }\langle\text { CMPLX-NOUN } \\
& \Rightarrow \text { a girl with a flower likes 〈ARTICLE }\rangle\langle\text { NOUN }\rangle \\
& \Rightarrow \text { a girl with a flower likes the boy }
\end{aligned}
$$

Regular languages vs Context-free languages

A CFG is right-linear if every rule is either of the form $R \rightarrow w T$ or of the form $R \rightarrow w$ where w ranges over strings of terminals, and R and T over variables.

Theorem

A language is regular if and only if it is generated by a right-linear CFG.

Parse trees

Each derivation determines a parse tree.
Parse trees are ordered trees: the children at each node are ordered.
The parse tree of a derivation abstracts away from the order in which variables are replaced in the sequence.

$$
\begin{aligned}
S & \Rightarrow a T a \\
& \Rightarrow a S a \\
& \Rightarrow a b T b a \\
& \Rightarrow a b c b a
\end{aligned}
$$

Properties of CFLs

Context-free languages are closed under union

Properties of CFLs

Context-free languages are closed under union
Context-free languages are not closed under complement nor intersection

Pushdown automata

CFLs can be recognized by Pushdown automata:

- Non-deterministic finite automaton, PLUS
- Stack memory:
- Infinite capacity for storing inputs
- Can recover top-most memory item to influence transitions

