COMP2111 Week 8

Term 1, 2019
Regular languages and beyond

Summary

Regular expressions
Myhill-Nerode theorem
Context-free languages
Mealy machines

LTL: Logic for transition systems

Summary

Regular expressions
Myhill-Nerode theorem
Context-free languages
Mealy machines

LTL: Logic for transition systems

Regular expressions

Regular expressions are a way of describing “finite automaton”
patterns:

@ Second-last letter is b

@ Every odd symbol is b

Many applications in CS:
@ Lexical analysis in compiler construction

@ Search facilities provided by text editors and databases;
utilities such as grep and awk

@ Programming languages such as Perl and XML

Regular expressions

Given a finite set X, a regular expression (RE) over ¥ is defined
recursively as follows:

@ () is a regular expression

@ c is a regular expression

@ ais a regular expression for all a € &
°

If E1 and E; are regular expressions, then E;E> is a regular
expression

If E; and E; are regular expressions, then E; + E is a regular
expression

o If E is a regular expression, then E* is a regular expression

We use parentheses to disambiguate REs, though * binds tighter
than concatenation, which binds tighter than +.

Examples

Example

The following are regular expressions over ¥ = {0, 1}:
°(
e 101 4 010
e (e+10)*01

Language of a Regular expression

A RE defines a language over X: the set of words which “match”
the expression:

@ Concatenation = sequences of expressions
@ Union = choice of expressions

@ Star = 0 or more occurrences of an expression

Example

The following words match (000 + 10)*01:
e 01
e 101001
@ 000101000001

Language of a Regular Expression

Formally, given an RE, E, over ¥, we define L(E) C X* recursively
as follows:

If E =0 then L(E) =10

If E =ethen L(E) = {\}

If E = a where a € X then L(E) ={a}

If E = E1Ep, then L(E) = L(E1) - L(E)

If E = E; + Es, then L(E) = L(E1) U L(E2)
If £ = Ef then L(E) = (L(E))*

Example

L(010 4 101) = ?

L((e + 10)*01) = ?

Language of a Regular Expression

Formally, given an RE, E, over ¥, we define L(E) C X* recursively
as follows:

If E =0 then L(E) =10

If E =ethen L(E) = {\}

If E = a where a € X then L(E) ={a}

If E = E1Ep, then L(E) = L(E1) - L(E)

If E = E; + Es, then L(E) = L(E1) U L(E2)
If £ = Ef then L(E) = (L(E))*

Example

L(010 + 101) = {010, 101}

L((e +10)*01) = ?

Language of a Regular Expression

Formally, given an RE, E, over ¥, we define L(E) C X* recursively
as follows:

If E =0 then L(E) =10

If E =ethen L(E) = {\}

If E = a where a € X then L(E) ={a}

If E = E1Ep, then L(E) = L(E1) - L(E)

If E = E; + Es, then L(E) = L(E1) U L(E2)
If £ = Ef then L(E) = (L(E))*

Example

L(010 4 101) = {010, 101}

L((e + 10)*01) = {01,1001,101001, ...}

Regular expressionss vs NfAs

Theorem (Kleene’s theorem)
@ For any regular expression E, L(E) is a regular language.

@ For any regular language L, there is a regular expression E
such that L = L(E)

Proof of Kleene’s theorem

Given E, L(E) is a regular language. Proof by induction on E.

Proof of Kleene’s theorem
Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

Proof of Kleene’s theorem
Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

o Let
*
Lf;q, ={wexr*: g% ¢ with all intermediate states in X}

Proof of Kleene’s theorem
Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)
o Let .
Lf;q, ={wex*: g5 ¢ with all intermediate states in X}
- X X Yy X
o Define E_ , such that L(E; /) = Lg
o When g =¢": Eg{q, —e4a+a+...+ax where g 25 g

o When g # q": Eg}q,=®+al+ag+...+akwhereqi>q’
o For X # ()

X—{r —4r —{r}y* X—{r
E‘fq’ = Eq«,q’{ }+E;fr i (Er),(r i) 'Er7q’{)
——

1) (2

Proof of Kleene’s theorem
Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)
o Let .
Lf;q, ={wex*: g5 ¢ with all intermediate states in X}
- X X Yy X
o Define E_ , such that L(E; /) = Lg
o When g =¢": Eg{q, —e4a+a+...+ax where g 25 g

o When g # q": Eg}q,=®+al+ag+...+akwhereqi>q’
o For X # ()

X—{r —4r —{r}y* X—{r
E‘fq’ = Eq«,q’{ }+E;fr i (Er),(r i) 'Er7q’{)
——

1) (2

EQ

@ The required expression is then E = qu,_- g

Example

Example
Construct an NFA for (e + 0)*1

Example

Example
Construct an NFA for (e + 0)*1

Example

Example
Find a regular expression for this NFA:

0

Example (ctd)

Example
Picking c as the separating state:

ENP = B3P+ ESRP (B ELS

By inspection Ei3% =€, ES2PY =101 and EZP =1
Now picking b as the separating state:

L = el + e - (D) - EfY

where EX2 — ¢, E!% —0+11, E/Y=c+0 and EF =1

)

Putting it all together we have

ES2P) = ¢ 4 10%1(e + (0 + 11)(e + 0)*1)*1

Summary

Regular expressions
Myhill-Nerode theorem
Context-free languages
Mealy machines

LTL: Logic for transition systems

L-indistinguishability

Let x,y € X" and let L C ¥*.
We say that x and y are L-indistinguishable, written x =; y, if
for every z € X%,

xze Ll ifandonlyif yzel.

L-indistinguishability

Let x,y € X" and let L C ¥*.
We say that x and y are L-indistinguishable, written x =; y, if
for every z € X%,

xze Ll ifandonlyif yzel.

Fact
=, is an equivalence relation.

We define the index of L to be the number of equivalence classes
of =/.

NB
The index of L may be finite or infinite.

Examples

Example
Take ¥ = {0, 1}.

Ly = {w : w has even length}.

u =, v iff length(u) = length(v)(mod 2).

Now =;, has two equivalence classes:
[e] =[00] =[10] = --- = {w : length(w) even} and
[0] = [1] = [010] = [110] = --- = {w : length(w) odd}.

Examples

Example
Take ¥ = {0,1}

Ly = {w : w has equal numbers of Os and 1s}.

For any i,j >0, if i # j then 0" #,, O/ (because 0’1’ € L, but
01l & Ly).

Therefore the index of L» is infinite.

Myhill-Nerode theorem

Theorem (Myhill-Nerode theorem)

L is regular if and only if L has finite index.

Moreover, the index is the size (= number of states) of the
smallest DFA accepting L.

Example

Example
Take X~ = {a, b}.

L, = {w : the n-th last symbol of w is b}

What is the index of L,?

Example

Example
Take ¥ = {a, b}.

L, = {w : the n-th last symbol of w is b}

What is the index of L,?
@ An NFA with n states can accept L,

Example

Example
Take ¥ = {a, b}.

L, = {w : the n-th last symbol of w is b}
What is the index of L,?

@ An NFA with n states can accept L,
@ So there is a DFA with 2" states that accepts L,

Example

Example
Take ¥ = {a, b}.

L, = {w : the n-th last symbol of w is b}

What is the index of L,?
@ An NFA with n states can accept L,
@ So there is a DFA with 2" states that accepts L,

@ So the index is at most 2"

Example

Example
Take ¥ = {a, b}.

L, ={w: the n-th last symbol of w is b}
What is the index of L,?

Take w,v € X" with w # v. Suppose w and v differ in the i-th
symbol, 0 <i<n—1. Let z=a"".

Example

Example
Take ¥ = {a, b}.

L, ={w: the n-th last symbol of w is b}
What is the index of L,?

Take w,v € X" with w # v. Suppose w and v differ in the i-th
symbol, 0 <i<n—1. Let z=a"".

@ Then only one of wz, vz isin L,

Example

Example
Take ¥ = {a, b}.

L, ={w: the n-th last symbol of w is b}

What is the index of L,?
Take w,v € X" with w # v. Suppose w and v differ in the i-th
symbol, 0 <i<n—1. Let z=a"".

@ Then only one of wz, vz isin L,

@ So w and v are L,-distinguishable (w Z;, v)

Example

Example
Take ¥ = {a, b}.

L, ={w: the n-th last symbol of w is b}

What is the index of L,?
Take w,v € X" with w # v. Suppose w and v differ in the i-th
symbol, 0 <i<n—1. Let z=a"".

@ Then only one of wz, vz isin L,

@ So w and v are L,-distinguishable (w Z;, v)

@ So the index is at least 2"

Summary

Regular expressions
Myhill-Nerode theorem
Context-free languages
Mealy machines

LTL: Logic for transition systems

Context-free grammars

Regular languages can be specified in terms of finite automata that
accept or reject strings, equivalently, in terms of regular
expressions, which strings are to match.

Grammars are a generative means of specifying sets of strings.

Context-free grammars (CFG): A way of generating
words

Ingredients of a CFG:
({variables}, {terminals}, { productions (or rules)}, start symbol)

The start symbol is a special variable.
A CFG generates strings over the alphabet ¥ = {terminals}.

Example
G = ({A,B},{0,1}, R, A) where R consists of three rules:

A — 0A1
A — B
B — ¢

How to generate strings using a CFG

1. Set w to be the start symbol.

2. Choose an occurrence of a variable X in w if any, otherwise
STOP.

3. Pick a production whose lhs is X, replace the chosen
occurrence of X in w by the rhs.

4. GOTO 2.

Example

G=({A B},{0,1}, {A—0A1| B, B — €}, A) generates
{0717 :i > 0}.

A 0A1
00A11
00B11

00ell=02%12

P44y

Such sequences are called derivations.

Formal definition
A context-free grammar is a 4-tuple G = (V, X, R,S) where
e V is a finite set of variables (or non-terminals)
@ ¥ (the alphabet) is a finite set of terminals

@ R is a finite set of productions. A production (or rule) is an
element of V x (VUX)*, written A — w.

@ S € V is the start symbol.

We define a binary relation = over ({V U X})* by: for each
u,v e ({VUX})* foreach A— win R

UAVv = uwv

The language generated by the grammar, L(G), is
{weX:S=*w}

A language is context-free if it can be generated by a CFG.

Examples

Example

Well-balanced parentheses: generated by ({S},{(,)}, R,S)
where R consists of

S = (S)|SS|e

Ee (() CC))) ()

Examples

Example

Inductively defined syntax:
o Well-formed formulas
o L

@ Regular expressions

Examples

Example

Inductively defined syntax:
o Well-formed formulas
o L
@ Regular expressions

WEFFs: Generated by ({¢}, X, R,) where
Y =PropU{T,L,(,),7,A,V,—, «} and R consists of

o = TILIP|[=pl(eAe)(eVe)l(e—e) (e)

Example

Examples

A small English language

(SENTENCE)
(NOUN-PHRASE)
(VERB-PHRASE)
(PREP-PHRASE)
(CMPLX-NOUN)
(CMPLX-VERB)

(ARTICLE)
(NOUN)
(VERB)
(PREP)

T e A

(NOUN-PHRASE) (VERB-PHRASE)
(CMPLX-NOUN) |
(CMPLX-VERB) | (CMPLX-VERB) (PREP-PH
(PREP) (CMPLX-NOUN)
(ARTICLE) (NOUN)

(

VERB) | (VERB) (NOUN-PHRASE)
a | the

boy | girl | flower

touches | like | see

with

(CMPLX-NOUN) (PREP-PHRASE

RASE

Example

Examples

A small English language

(SENTENCE)

R I 2 2 0 I R A

(NOUN-PHRASE) (VERB-PHRASE)
(CMPLX-NOUN) (PREP-PHRASE) (VERB-PHRASE)

(ARTICLE) (NOUN) (PREP-PHRASE) (VERB-PHRASE

a girl (PREP) (CMPLX-NOUN) (VERB-PHRASE)
a girl with (CMPLX-NOUN) (VERB-PHRASE)

a girl with (ARTICLE) (NOUN) (VERB-PHRASE)
a girl with a flower (VERB-PHRASE)

a girl with a flower (CMPLX-VERB)

a girl with a flower (VERB) (NOUN-PHRASE)

a girl with a flower likes (CMPLX-NOUN)

a girl with a flower likes (ARTICLE) (NOUN)

u

a girl with a flower likes the boy

-

Regular languages vs Context-free languages

A CFG is right-linear if every rule is either of the form R — wT or
of the form R — w where w ranges over strings of terminals, and
R and T over variables.

Theorem

A language is regular if and only if it is generated by a right-linear
CFG.

Parse trees

Each derivation determines a parse tree.

Parse trees are ordered trees: the children at each node are ordered.
The parse tree of a derivation abstracts away from the order in
which variables are replaced in the sequence.

S
AN
S =aTa a T a
=aSa
=abTba

= abcba / \

|
s
|
b T b
C

Properties of CFLs

Context-free languages are closed under union

Properties of CFLs

Context-free languages are closed under union

Context-free languages are not closed under complement nor
intersection

Pushdown automata

CFLs can be recognized by Pushdown automata:
@ Non-deterministic finite automaton, PLUS

@ Stack memory:

o Infinite capacity for storing inputs
o Can recover top-most memory item to influence transitions

