COMP2111 Week 8 Term 1, 2019 Regular languages and beyond

1

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Summary

(ロ) (同) (E) (E) (E)

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

2

Summary

(ロ) (同) (E) (E) (E)

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

3

Regular expressions

Regular expressions are a way of describing "finite automaton" patterns:

- Second-last letter is b
- Every odd symbol is *b*

Many applications in CS:

- Lexical analysis in compiler construction
- Search facilities provided by text editors and databases; utilities such as grep and awk
- Programming languages such as Perl and XML

Regular expressions

Given a finite set Σ , a regular expression (RE) over Σ is defined recursively as follows:

- Ø is a regular expression
- ϵ is a regular expression
- *a* is a regular expression for all $a \in \Sigma$
- If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression
- If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression

• If *E* is a regular expression, then E^* is a regular expression We use parentheses to disambiguate REs, though * binds tighter than concatenation, which binds tighter than +.

Example The following are regular expressions over $\Sigma = \{0, 1\}$: • \emptyset • 101 + 010• $(\epsilon + 10)^*01$

Language of a Regular expression

A RE defines a language over Σ : the set of words which "match" the expression:

- Concatenation = sequences of expressions
- Union = choice of expressions
- Star = 0 or more occurrences of an expression

Example

The following words match $(000 + 10)^*01$:

- 01
- 101001
- 000101000001

Language of a Regular Expression

Formally, given an RE, *E*, over Σ , we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If E = a where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1 E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

L(010 + 101) = ?

 $L((\epsilon + 10)^*01) = ?$

Language of a Regular Expression

Formally, given an RE, *E*, over Σ , we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If E = a where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1 E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$$L(010+101) = \{010, 101\}$$

 $L((\epsilon + 10)^*01) = ?$

Language of a Regular Expression

Formally, given an RE, *E*, over Σ , we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If E = a where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1 E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

```
L(010+101) = \{010, 101\}
```

 $L((\epsilon + 10)^*01) = \{01, 1001, 101001, \ldots\}$

Regular expressionss vs NfAs

Theorem (Kleene's theorem)

- For any regular expression E, L(E) is a regular language.
- For any regular language L, there is a regular expression E such that L = L(E)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

- \sim Let \sim . (i.e. \sim) \sim (i.e. \sim) \sim , \sim) \sim
- \sim Define $E_{1,q}^{2}$, such that $L(E_{1,q}^{2}) = L_{1,q}^{2}$
 - When $q=q^{2}/2^{2}$, $q=c+\alpha_{1}+\alpha_{2}+c_{2}+\alpha_{3}$, where $q\in 0$, q
 - \sim When $q \geq q' \in \mathbb{C}_{q,q'}^{2} := \emptyset \geq a_{1} + a_{2} + a_{2} + a_{3} + a_{4}$, where $q \geq q'$

The required expression is then $E = \sum_{\alpha \in E} E_{\alpha : \alpha}^{V}$

Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

Let

 $L^X_{q,q'} = \{ w \in \Sigma^* \ : \ q \xrightarrow{w^*} q' \text{ with all intermediate states in } X \}$

• Define $E_{q,q'}^X$ such that $L(E_{q,q'}^X) = L_{q,q'}^X$:

• When
$$q=q'\colon E_{q,q'}^{\emptyset}=\epsilon+a_1+a_2+\ldots+a_k$$
 where $q \xrightarrow{a_i} q$

• When
$$q \neq q'$$
: $E_{q,q'}^{\emptyset} = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_1} q'$
• For $X \neq \emptyset$:

$$E_{q,q'}^{X} = \underbrace{E_{q,q'}^{X-\{r\}}}_{(1)} + \underbrace{E_{q,r}^{X-\{r\}} \cdot (E_{r,r}^{X-\{r\}})^* \cdot E_{r,q'}^{X-\{r\}}}_{(2)}$$

イロン イボン イヨン イヨン 二日

• The required expression is then $E = \sum_{q \in F} E_{q_0,c}^Q$

Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

• Let $L_{q,q'}^{X} = \{ w \in \Sigma^{*} : q \xrightarrow{w}{}^{*} q' \text{ with all intermediate states in } X \}$ • Define $E_{q,q'}^{X}$ such that $L(E_{q,q'}^{X}) = L_{q,q'}^{X}$: • When q = q': $E_{q,q'}^{0} = c + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a} q$ • When $q \neq q'$: $E_{q,q'}^{0} = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a} q'$ • For $X \neq \emptyset$:

$$E_{q,q'}^{X} = \underbrace{E_{q,q'}^{X-\{r\}}}_{(1)} + \underbrace{E_{q,r}^{X-\{r\}} \cdot (E_{r,r}^{X-\{r\}})^* \cdot E_{r,q'}^{X-\{r\}}}_{(2)}$$

(日)(同)(日)(日)(日)(日)

• The required expression is then $E = \sum_{q \in F} E_{q_0,c}^Q$

Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

• Let $L_{q,q'}^{X} = \{ w \in \Sigma^{*} : q \xrightarrow{w}^{*} q' \text{ with all intermediate states in } X \}$ • Define $E_{q,q'}^{X}$ such that $L(E_{q,q'}^{X}) = L_{q,q'}^{X}$: • When q = q': $E_{q,q'}^{\emptyset} = \epsilon + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q$ • When $q \neq q'$: $E_{q,q'}^{\emptyset} = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q'$ • For $X \neq \emptyset$: $E_{q,q'}^{X} = \underbrace{E_{q,q'}^{X-\{r\}}}_{Q} + \underbrace{E_{q,r}^{X-\{r\}} \cdot (E_{r,r}^{X-\{r\}})^{*} \cdot E_{r,q'}^{X-\{r\}}}_{Q}$

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

• The required expression is then $E = \sum_{q \in F} E_{q_0,q}^Q$

Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

• Let $L_{q,q'}^{X} = \{ w \in \Sigma^{*} : q \xrightarrow{w}{}^{*} q' \text{ with all intermediate states in } X \}$ • Define $E_{q,q'}^{X}$ such that $L(E_{q,q'}^{X}) = L_{q,q'}^{X}$: • When q = q': $E_{q,q'}^{\emptyset} = \epsilon + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q$ • When $q \neq q'$: $E_{q,q'}^{\emptyset} = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q'$ • For $X \neq \emptyset$: $E_{q,q'}^{X} = \underbrace{E_{q,q'}^{X-\{r\}}}_{Q,q'} + \underbrace{E_{q,r}^{X-\{r\}} \cdot (E_{r,r}^{X-\{r\}})^{*} \cdot E_{r,q'}^{X-\{r\}}}_{Q}$

• The required expression is then $E = \sum_{q \in F} E_{q_0,q}^Q$

Example Construct an NFA for $(\epsilon + 0)^*1$ ϵ ϵ n

Example (ctd)

Example

Picking c as the separating state:

$$E_{a,a}^{\{a,b,c\}} = E_{a,a}^{\{a,b\}} + E_{a,c}^{\{a,b\}} \cdot (E_{c,c}^{\{a,b\}})^* \cdot E_{c,a}^{\{a,b\}}.$$

By inspection $E_{a,a}^{\{a,b\}} = \epsilon$, $E_{a,c}^{\{a,b\}} = 10^*1$ and $E_{c,a}^{\{a,b\}} = 1$.

Now picking b as the separating state:

$$E_{c,c}^{\{a,b\}} = E_{c,c}^{\{a\}} + E_{c,b}^{\{a\}} \cdot (E_{b,b}^{\{a\}})^* \cdot E_{b,c}^{\{a\}}$$

where $E_{c,c}^{\{a\}} = \epsilon$, $E_{c,b}^{\{a\}} = 0 + 11$, $E_{b,b}^{\{a\}} = \epsilon + 0$ and $E_{b,c}^{\{a\}} = 1$.
Putting it all together we have

 $E_{a,a}^{\{a,b,c\}} = \epsilon + 10^* 1(\epsilon + (0+11)(\epsilon+0)^* 1)^* 1$

Summary

(ロ) (同) (E) (E) (E)

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

L-indistinguishability

Let $x, y \in \Sigma^*$ and let $L \subseteq \Sigma^*$. We say that x and y are *L*-indistinguishable, written $x \equiv_L y$, if for every $z \in \Sigma^*$,

 $xz \in L$ if and only if $yz \in L$.

Fact

 \equiv_L is an equivalence relation.

We define the **index** of *L* to be the number of equivalence classes of \equiv_L .

・ロト ・回ト ・ヨト ・ヨト

NB

The index of L may be finite or infinite.

L-indistinguishability

Let $x, y \in \Sigma^*$ and let $L \subseteq \Sigma^*$. We say that x and y are *L*-indistinguishable, written $x \equiv_L y$, if for every $z \in \Sigma^*$,

$$xz \in L$$
 if and only if $yz \in L$.

Fact

 \equiv_L is an equivalence relation.

We define the **index** of *L* to be the number of equivalence classes of \equiv_L .

NB

The index of L may be finite or infinite.

Example

Take $\Sigma = \{0, 1\}$.

 $L_1 = \{ w : w \text{ has even length} \}.$

 $u \equiv_{L_1} v$ iff length $(u) \equiv$ length $(v) \pmod{2}$.

Now \equiv_{L_1} has two equivalence classes: $[\epsilon] = [00] = [10] = \cdots = \{w : \text{length}(w) \text{ even}\}$ and $[0] = [1] = [010] = [110] = \cdots = \{w : \text{length}(w) \text{ odd}\}.$

Example

Take $\Sigma = \{0,1\}$

 $L_2 = \{w : w \text{ has equal numbers of 0s and 1s}\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

For any $i, j \ge 0$, if $i \ne j$ then $0^i \not\equiv_{L_2} 0^j$ (because $0^i 1^i \in L_2$ but $0^j 1^i \notin L_2$).

Therefore the index of L_2 is infinite.

Myhill-Nerode theorem

Theorem (Myhill-Nerode theorem)

L is regular if and only if L has finite index.

Moreover, the index is the size (= number of states) of the smallest DFA accepting L.

(ロ) (同) (E) (E) (E)

Example

Take $\Sigma = \{a, b\}$.

 $L_n = \{w : \text{ the } n\text{-th last symbol of } w \text{ is } b\}$

Example

Take $\Sigma = \{a, b\}$.

 $L_n = \{w : \text{ the } n\text{-th last symbol of } w \text{ is } b\}$

- An NFA with n states can accept L_n
- So there is a DFA with 2ⁿ states that accepts L_n
- So the index is at most 2ⁿ

Example

Take $\Sigma = \{a, b\}$.

 $L_n = \{w : \text{ the } n\text{-th last symbol of } w \text{ is } b\}$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

- An NFA with n states can accept L_n
- So there is a DFA with 2^n states that accepts L_n
- So the index is at most 2ⁿ

Example

Take $\Sigma = \{a, b\}$.

 $L_n = \{w : \text{ the } n\text{-th last symbol of } w \text{ is } b\}$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

- An NFA with n states can accept L_n
- So there is a DFA with 2^n states that accepts L_n
- So the index is at most 2ⁿ

Example

Take $\Sigma = \{a, b\}$.

 $L_n = \{w : \text{ the } n\text{-th last symbol of } w \text{ is } b\}$

What is the index of L_n ? Take $w, v \in \Sigma^n$ with $w \neq v$. Suppose w and v differ in the *i*-th symbol, $0 \leq i \leq n-1$. Let $z = a^{n-i}$. • Then only one of wz, vz is in L_n • So w and v are L_n -distinguishable ($w \not\equiv_{L_n} v$)

Example

Take $\Sigma = \{a, b\}$.

 $L_n = \{w : \text{ the } n\text{-th last symbol of } w \text{ is } b\}$

What is the index of L_n ? Take $w, v \in \Sigma^n$ with $w \neq v$. Suppose w and v differ in the *i*-th symbol, $0 \leq i \leq n-1$. Let $z = a^{n-i}$.

• Then only one of wz, vz is in L_n

• So w and v are L_n -distinguishable ($w \not\equiv_{L_n} v$)

• So the index is at least 2^r

Example

Take $\Sigma = \{a, b\}$.

 $L_n = \{w : \text{ the } n\text{-th last symbol of } w \text{ is } b\}$

What is the index of L_n ? Take $w, v \in \Sigma^n$ with $w \neq v$. Suppose w and v differ in the *i*-th symbol, $0 \leq i \leq n-1$. Let $z = a^{n-i}$.

• Then only one of wz, vz is in L_n

• So w and v are L_n -distinguishable $(w \not\equiv_{L_n} v)$

So the index is at least 2"

Example

Take $\Sigma = \{a, b\}$.

$$L_n = \{w : \text{ the } n \text{-th last symbol of } w \text{ is } b\}$$

What is the index of L_n ? Take $w, v \in \Sigma^n$ with $w \neq v$. Suppose w and v differ in the *i*-th symbol, $0 \leq i \leq n-1$. Let $z = a^{n-i}$.

- Then only one of wz, vz is in L_n
- So w and v are L_n -distinguishable $(w \not\equiv_{L_n} v)$
- So the index is at least 2ⁿ

Summary

(ロ) (同) (E) (E) (E)

- Regular expressions
- Myhill-Nerode theorem
- Context-free languages
- Mealy machines
- LTL: Logic for transition systems

Context-free grammars

Regular languages can be specified in terms of finite automata that accept or reject strings, equivalently, in terms of regular expressions, which strings are to match.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Grammars are a generative means of specifying sets of strings.

Context-free grammars (CFG): A way of generating words

Ingredients of a CFG:

({variables}, {terminals}, {productions (or rules)}, start symbol)

The start symbol is a special variable. A CFG generates strings over the alphabet $\Sigma = \{\text{terminals}\}.$

Example

 $G = (\{A, B\}, \{0, 1\}, \mathcal{R}, A)$ where \mathcal{R} consists of three rules:

$$\begin{array}{cccc}
A & \rightarrow & 0A1 \\
A & \rightarrow & B \\
B & \rightarrow & \epsilon
\end{array}$$

How to generate strings using a CFG

- **1.** Set *w* to be the start symbol.
- 2. Choose an occurrence of a variable X in w if any, otherwise STOP.
- **3.** Pick a production whose lhs is X, replace the chosen occurrence of X in w by the rhs.
- 4. GOTO 2.

Example

```
G = (\{A, B\}, \{0, 1\}, \{A \rightarrow 0 \ A1 \mid B, B \rightarrow \epsilon\}, A) \text{ generates}\{0^{i} 1^{i} : i \geq 0\}.A \Rightarrow 0 \ A11\Rightarrow 0 \ 0 \ A11\Rightarrow 0 \ 0 \ B11
```

 $\Rightarrow 0 0 \epsilon 11 = 0^2 1^2$

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

Such sequences are called derivations.

Formal definition

A context-free grammar is a 4-tuple $G = (V, \Sigma, \mathcal{R}, S)$ where

- V is a finite set of variables (or non-terminals)
- Σ (the alphabet) is a finite set of *terminals*
- *R* is a finite set of *productions*. A *production* (or *rule*) is an element of V × (V ∪ Σ)*, written A → w.
- $S \in V$ is the start symbol.

We define a binary relation \Rightarrow over $({V \cup \Sigma})^*$ by: for each $u, v \in ({V \cup \Sigma})^*$, for each $A \to w$ in \mathcal{R}

 $u A v \Rightarrow u w v$

The language generated by the grammar, L(G), is $\{w \in \Sigma^* : S \Rightarrow^* w\}$.

A language is context-free if it can be generated by a CFG.

Example

Well-balanced parentheses: generated by $({S}, { (,) }, \mathcal{R}, S)$ where \mathcal{R} consists of

 $S \rightarrow (S) | SS| \epsilon$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

E.g. (() (())) ()

Inductively defined syntax:

- Well-formed formulas
- L
- Regular expressions

WFFs: Generated by $(\{\varphi\}, \Sigma, \mathcal{R}, \varphi)$ where $\Sigma = \operatorname{Prop} \cup \{\top, \bot, (,), \neg, \land, \lor, \leftrightarrow, \leftrightarrow\}$ and \mathcal{R} consists of

 $\varphi \rightarrow \top |\perp| P |\neg \varphi| (\varphi \land \varphi) | (\varphi \lor \varphi) | (\varphi \to \varphi) | (\varphi \leftrightarrow \varphi)$

Example

Inductively defined syntax:

- Well-formed formulas
- L
- Regular expressions

WFFs: Generated by $(\{\varphi\}, \Sigma, \mathcal{R}, \varphi)$ where

 $\Sigma = \operatorname{Prop} \cup \{\top, \bot, (,), \neg, \land, \lor, \rightarrow, \leftrightarrow\} \text{ and } \mathcal{R} \text{ consists of }$

 $\varphi \rightarrow \top |\perp| P |\neg \varphi| (\varphi \land \varphi) | (\varphi \lor \varphi) | (\varphi \rightarrow \varphi) | (\varphi \leftrightarrow \varphi)$

	Example		
A small English language			
			-
	,		
	$\langle \text{SENTENCE} \rangle$	\rightarrow	$\langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle$
	$\langle \text{NOUN-PHRASE} \rangle$	\rightarrow	$\langle \text{CMPLX-NOUN} \rangle \mid \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE}$
	$\langle \text{VERB-PHRASE} \rangle$	\rightarrow	$\langle \text{CMPLX-VERB} \rangle \mid \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE}$
			$\langle PREP \rangle \langle CMPLX-NOUN \rangle$
			$\langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle$
	$\langle \text{CMPLX-VERB} \rangle$	\rightarrow	$\langle VERB \rangle \mid \langle VERB \rangle \langle NOUN-PHRASE \rangle$
	$\langle \text{ARTICLE} \rangle$	\rightarrow	a the
			boy girl flower
	$\langle \text{VERB} \rangle$	\rightarrow	touches like see
	$\langle \text{PREP} \rangle$	\rightarrow	with

Example

- A small English language
 - $\langle {\rm sentence} \rangle \quad \Rightarrow \quad$
- $\langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle$
 - \Rightarrow (CMPLX-NOUN) (PREP-PHRASE) (VERB-PHRASE)
 - \Rightarrow (ARTICLE) (NOUN) (PREP-PHRASE) (VERB-PHRASE)
 - \Rightarrow a girl $\langle PREP \rangle \langle CMPLX-NOUN \rangle \langle VERB-PHRASE \rangle$
 - \Rightarrow a girl with $\langle \text{CMPLX-NOUN} \rangle \langle \text{VERB-PHRASE} \rangle$
 - \Rightarrow a girl with $\langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle \langle \text{VERB-PHRASE} \rangle$
 - \Rightarrow a girl with a flower $\langle VERB-PHRASE \rangle$
 - \Rightarrow a girl with a flower $\langle \text{CMPLX-VERB} \rangle$
 - \Rightarrow a girl with a flower $\langle VERB \rangle \langle NOUN-PHRASE \rangle$
 - \Rightarrow a girl with a flower likes $\langle \text{CMPLX-NOUN} \rangle$
 - \Rightarrow a girl with a flower likes $\langle ARTICLE \rangle \langle NOUN \rangle$
 - \Rightarrow a girl with a flower likes the boy

Regular languages vs Context-free languages

A CFG is **right-linear** if every rule is either of the form $R \rightarrow wT$ or of the form $R \rightarrow w$ where w ranges over strings of terminals, and R and T over variables.

Theorem

A language is regular if and only if it is generated by a right-linear CFG.

Parse trees

Each derivation determines a parse tree.

Parse trees are *ordered* trees: the children at each node are ordered. The parse tree of a derivation abstracts away from the order in which variables are replaced in the sequence.

Properties of CFLs

Context-free languages are closed under union

Context-free languages are **not** closed under complement nor intersection

Properties of CFLs

Context-free languages are closed under union

 $\label{eq:context-free languages are } \textbf{not} \ \text{closed under complement nor} \\ \text{intersection}$

48

Pushdown automata

CFLs can be recognized by Pushdown automata:

- Non-deterministic finite automaton, PLUS
- Stack memory:
 - Infinite capacity for storing inputs
 - Can recover top-most memory item to influence transitions