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Regular expressions

Regular expressions are a way of describing “finite automaton”
patterns:

Second-last letter is b

Every odd symbol is b

Many applications in CS:

Lexical analysis in compiler construction

Search facilities provided by text editors and databases;
utilities such as grep and awk

Programming languages such as Perl and XML
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Regular expressions

Given a finite set Σ, a regular expression (RE) over Σ is defined
recursively as follows:

∅ is a regular expression

ε is a regular expression

a is a regular expression for all a ∈ Σ

If E1 and E2 are regular expressions, then E1E2 is a regular
expression

If E1 and E2 are regular expressions, then E1 + E2 is a regular
expression

If E is a regular expression, then E ∗ is a regular expression

We use parentheses to disambiguate REs, though ∗ binds tighter
than concatenation, which binds tighter than +.
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Examples

Example

The following are regular expressions over Σ = {0, 1}:
∅
101 + 010

(ε+ 10)∗01
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Language of a Regular expression

A RE defines a language over Σ: the set of words which “match”
the expression:

Concatenation = sequences of expressions

Union = choice of expressions

Star = 0 or more occurrences of an expression

Example

The following words match (000 + 10)∗01:

01

101001

000101000001
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Language of a Regular Expression
Formally, given an RE, E , over Σ, we define L(E ) ⊆ Σ∗ recursively
as follows:

If E = ∅ then L(E ) = ∅
If E = ε then L(E ) = {λ}
If E = a where a ∈ Σ then L(E ) = {a}
If E = E1E2, then L(E ) = L(E1) · L(E2)

If E = E1 + E2, then L(E ) = L(E1) ∪ L(E2)

If E = E ∗1 then L(E ) = (L(E1))∗

Example

L(010 + 101) = ?

L((ε+ 10)∗01) = ?
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Language of a Regular Expression
Formally, given an RE, E , over Σ, we define L(E ) ⊆ Σ∗ recursively
as follows:

If E = ∅ then L(E ) = ∅
If E = ε then L(E ) = {λ}
If E = a where a ∈ Σ then L(E ) = {a}
If E = E1E2, then L(E ) = L(E1) · L(E2)

If E = E1 + E2, then L(E ) = L(E1) ∪ L(E2)

If E = E ∗1 then L(E ) = (L(E1))∗

Example

L(010 + 101) = {010, 101}

L((ε+ 10)∗01) = {01, 1001, 101001, . . .}
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Regular expressionss vs NfAs

Theorem (Kleene’s theorem)

For any regular expression E, L(E ) is a regular language.

For any regular language L, there is a regular expression E
such that L = L(E )
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Proof of Kleene’s theorem

Given E , L(E ) is a regular language. Proof by induction on E .

Given L, find E such that L = L(E )

Let
LXq,q′ = {w ∈ Σ∗ : q

w−→
∗
q′ with all intermediate states in X}

Define EX
q,q′ such that L(EX

q,q′) = LXq,q′ :

When q = q′: E∅q,q′ = ε+ a1 + a2 + . . .+ ak where q
ai−→ q

When q 6= q′: E∅q,q′ = ∅+ a1 + a2 + . . .+ ak where q
ai−→ q′

For X 6= ∅:

EX
q,q′ = E

X−{r}
q,q′︸ ︷︷ ︸
(1)

+EX−{r}
q,r · (EX−{r}

r ,r )∗ · EX−{r}
r ,q′︸ ︷︷ ︸

(2)

The required expression is then E =
∑

q∈F EQ
q0,q
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Example

Example

Construct an NFA for (ε+ 0)∗1

ε ε

ε

1
1

1

ε

0

ε
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Construct an NFA for (ε+ 0)∗1

ε ε

ε

1
1

1

ε

0

ε
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Example

Example

Find a regular expression for this NFA:

a

b

c

1

0

1

0

1
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Example (ctd)
Example

Picking c as the separating state:

E
{a,b,c}
a,a = E

{a,b}
a,a + E

{a,b}
a,c · (E {a,b}c,c )∗ · E {a,b}c,a .

By inspection E
{a,b}
a,a = ε, E

{a,b}
a,c = 10∗1 and E

{a,b}
c,a = 1.

Now picking b as the separating state:

E
{a,b}
c,c = E

{a}
c,c + E

{a}
c,b · (E

{a}
b,b )∗ · E {a}b,c

where E
{a}
c,c = ε, E

{a}
c,b = 0 + 11, E

{a}
b,b = ε+ 0 and E

{a}
b,c = 1.

Putting it all together we have

E
{a,b,c}
a,a = ε+ 10∗1(ε+ (0 + 11)(ε+ 0)∗1)∗1
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L-indistinguishability

Let x , y ∈ Σ∗ and let L ⊆ Σ∗.
We say that x and y are L-indistinguishable, written x ≡L y , if
for every z ∈ Σ∗,

xz ∈ L if and only if yz ∈ L.

Fact

≡L is an equivalence relation.

We define the index of L to be the number of equivalence classes
of ≡L.

NB

The index of L may be finite or infinite.
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Examples

Example

Take Σ = {0, 1}.

L1 = {w : w has even length}.

u ≡L1 v iff length(u) ≡ length(v)(mod 2).

Now ≡L1 has two equivalence classes:
[ε] = [00] = [10] = · · · = {w : length(w) even} and
[0] = [1] = [010] = [110] = · · · = {w : length(w) odd}.
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Examples

Example

Take Σ = {0, 1}

L2 = {w : w has equal numbers of 0s and 1s}.

For any i , j ≥ 0, if i 6= j then 0i 6≡L2 0j (because 0i1i ∈ L2 but
0j1i 6∈ L2).

Therefore the index of L2 is infinite.
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Myhill-Nerode theorem

Theorem (Myhill-Nerode theorem)

L is regular if and only if L has finite index.

Moreover, the index is the size (= number of states) of the
smallest DFA accepting L.
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Example

Example

Take Σ = {a, b}.

Ln = {w : the n-th last symbol of w is b}

What is the index of Ln?
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Example

Example

Take Σ = {a, b}.

Ln = {w : the n-th last symbol of w is b}

What is the index of Ln?

An NFA with n states can accept Ln

So there is a DFA with 2n states that accepts Ln

So the index is at most 2n
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Example

Example

Take Σ = {a, b}.

Ln = {w : the n-th last symbol of w is b}

What is the index of Ln?
Take w , v ∈ Σn with w 6= v . Suppose w and v differ in the i-th
symbol, 0 ≤ i ≤ n − 1. Let z = an−i .

Then only one of wz , vz is in Ln

So w and v are Ln-distinguishable (w 6≡Ln v)

So the index is at least 2n
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Context-free grammars

Regular languages can be specified in terms of finite automata that
accept or reject strings, equivalently, in terms of regular
expressions, which strings are to match.
Grammars are a generative means of specifying sets of strings.
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Context-free grammars (CFG): A way of generating
words

Ingredients of a CFG:

({variables}, {terminals}, {productions (or rules)}, start symbol)

The start symbol is a special variable.
A CFG generates strings over the alphabet Σ = {terminals}.

Example

G = ({A,B}, {0, 1},R,A) where R consists of three rules:
A → 0A 1
A → B
B → ε
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How to generate strings using a CFG

1. Set w to be the start symbol.

2. Choose an occurrence of a variable X in w if any, otherwise
STOP.

3. Pick a production whose lhs is X , replace the chosen
occurrence of X in w by the rhs.

4. GOTO 2.

Example

G = ({A,B}, {0, 1}, {A→ 0A 1 | B, B → ε},A) generates
{0i 1i : i ≥ 0}.

A ⇒ 0A 1
⇒ 0 0A 1 1
⇒ 0 0B 1 1
⇒ 0 0 ε 1 1 = 02 12

Such sequences are called derivations.
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Formal definition
A context-free grammar is a 4-tuple G = (V ,Σ,R, S) where

V is a finite set of variables (or non-terminals)

Σ (the alphabet) is a finite set of terminals

R is a finite set of productions. A production (or rule) is an
element of V × (V ∪ Σ)∗, written A→ w .

S ∈ V is the start symbol.

We define a binary relation ⇒ over ({V ∪ Σ})∗ by: for each
u, v ∈ ({V ∪ Σ})∗, for each A→ w in R

u A v ⇒ u w v

The language generated by the grammar, L(G ), is
{w ∈ Σ∗ : S ⇒∗ w}.

A language is context-free if it can be generated by a CFG.
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Examples

Example

Well-balanced parentheses: generated by ({S}, { ( , ) },R, S)
where R consists of

S → ( S ) |S S | ε

E.g. ( ( ) ( ( ) ) ) ( )
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Examples

Example

Inductively defined syntax:

Well-formed formulas

L
Regular expressions

WFFs: Generated by ({ϕ},Σ,R, ϕ) where
Σ = Prop ∪ {>,⊥, (, ),¬,∧,∨,→,↔} and R consists of

ϕ → >|⊥ |P | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)
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Examples

Example

A small English language

〈sentence〉 → 〈noun-phrase〉 〈verb-phrase〉
〈noun-phrase〉 → 〈cmplx-noun〉 | 〈cmplx-noun〉 〈prep-phrase〉
〈verb-phrase〉 → 〈cmplx-verb〉 | 〈cmplx-verb〉 〈prep-phrase〉
〈prep-phrase〉 → 〈prep〉 〈cmplx-noun〉
〈cmplx-noun〉 → 〈article〉 〈noun〉
〈cmplx-verb〉 → 〈verb〉 | 〈verb〉 〈noun-phrase〉

〈article〉 → a | the
〈noun〉 → boy | girl | flower
〈verb〉 → touches | like | see
〈prep〉 → with
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Examples

Example

A small English language

〈sentence〉 ⇒ 〈noun-phrase〉 〈verb-phrase〉
⇒ 〈cmplx-noun〉 〈prep-phrase〉 〈verb-phrase〉
⇒ 〈article〉 〈noun〉 〈prep-phrase〉 〈verb-phrase〉
⇒ a girl 〈prep〉 〈cmplx-noun〉 〈verb-phrase〉
⇒ a girl with 〈cmplx-noun〉 〈verb-phrase〉
⇒ a girl with 〈article〉 〈noun〉 〈verb-phrase〉
⇒ a girl with a flower 〈verb-phrase〉
⇒ a girl with a flower 〈cmplx-verb〉
⇒ a girl with a flower 〈verb〉 〈noun-phrase〉
⇒ a girl with a flower likes 〈cmplx-noun〉
⇒ a girl with a flower likes 〈article〉 〈noun〉
⇒ a girl with a flower likes the boy
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Regular languages vs Context-free languages

A CFG is right-linear if every rule is either of the form R → wT or
of the form R → w where w ranges over strings of terminals, and
R and T over variables.

Theorem

A language is regular if and only if it is generated by a right-linear
CFG.
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Parse trees

Each derivation determines a parse tree.
Parse trees are ordered trees: the children at each node are ordered.
The parse tree of a derivation abstracts away from the order in
which variables are replaced in the sequence.

⇒ a T aS

⇒ a S a

⇒ a b T b a

⇒ a b c b a

S

a T a

S

b T b

c
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Properties of CFLs

Context-free languages are closed under union

Context-free languages are not closed under complement nor
intersection
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Pushdown automata

CFLs can be recognized by Pushdown automata:

Non-deterministic finite automaton, PLUS

Stack memory:

Infinite capacity for storing inputs
Can recover top-most memory item to influence transitions
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