Exercise 1. Show that Path Packing has no polynomial kernel unless NP \subseteq \text{coNP/poly}.

Path Packing
Input: A graph G and an integer k
Parameter: k
Question: Are there k pairwise vertex-disjoint paths of length at least k each?

Exercise 2. An endpoint of a path is a vertex that has degree at most 1 in the path. Consider the NP-complete Anchored Path problem.

Anchored Path
Input: A graph $G = (V, E)$, a vertex $r \in V$, and an integer $k \leq |V|$
Parameter: k
Question: Does G have a path on k vertices as a subgraph such that r is an endpoint of that path?

Prove that Anchored Path has no polynomial kernel unless coNP \subseteq NP/poly.