## 8. Inclusion-Exclusion

## COMP6741: Parameterized and Exact Computation

Serge Gaspers ${ }^{12}$<br>${ }^{1}$ School of Computer Science and Engineering, UNSW Sydney, Asutralia<br>${ }^{2}$ Decision Sciences Group, Data61, CSIRO, Australia

Semester 2, 2017

## Outline

(1) The Principle of Inclusion-Exclusion
(2) Counting Hamiltonian Cycles
(3) Coloring
(4) Counting Set Covers
(5) Counting Set Partitions
(6) Further Reading

## Outline

(1) The Principle of Inclusion-Exclusion
(2) Counting Hamiltonian Cycles
(3) Coloring

4 Counting Set Covers
(5) Counting Set Partitions
(6) Further Reading

## ... for 3 sets

$|A \cup B \cup C|=$


## ... for 3 sets

$|A \cup B \cup C|=|A|+|B|+|C|$


## ... for 3 sets

$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|$


## ... for 3 sets

$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$


## ... for 3 sets

$$
\begin{aligned}
& |A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| \\
& |A \cup B \cup C|=\sum_{X \subseteq\{A, B, C\}}(-1)^{|X|+1} \cdot|\cap X|
\end{aligned}
$$



## ... intersection version

## $|A \cap B \cap C|=$



## ... intersection version

## $|A \cap B \cap C|=|U|$



## ... intersection version

$$
|A \cap B \cap C|=|U|-|\bar{A}|-|\bar{B}|-|\bar{C}|
$$



## ... intersection version

$$
|A \cap B \cap C|=|U|-|\bar{A}|-|\bar{B}|-|\bar{C}|+|\bar{A} \cap \bar{B}|+|\bar{A} \cap \bar{C}|+|\bar{B} \cap \bar{C}|
$$



## ... intersection version

$$
|A \cap B \cap C|=|U|-|\bar{A}|-|\bar{B}|-|\bar{C}|+|\bar{A} \cap \bar{B}|+|\bar{A} \cap \bar{C}|+|\bar{B} \cap \bar{C}|-|\bar{A} \cap \bar{B} \cap \bar{C}|
$$



## ... intersection version

$$
\begin{aligned}
& |A \cap B \cap C|=|U|-|\bar{A}|-|\bar{B}|-|\bar{C}|+|\bar{A} \cap \bar{B}|+|\bar{A} \cap \bar{C}|+|\bar{B} \cap \bar{C}|-|\bar{A} \cap \bar{B} \cap \bar{C}| \\
& |A \cap B \cap C|=\sum_{X \subseteq\{A, B, C\}}(-1)^{|X|} \cdot|\bigcap \bar{X}|
\end{aligned}
$$



## Inclusion-Exclusion Principle - intersection version

## Theorem 1 (IE-theorem - intersection version)

Let $U=A_{0}$ be a finite set, and let $A_{1}, \ldots, A_{k} \subseteq U$.

$$
\left|\bigcap_{i \in\{1, \ldots, k\}} A_{i}\right|=\sum_{J \subseteq\{1, \ldots, k\}}(-1)^{|J|}\left|\bigcap_{i \in J} \overline{A_{i}}\right|,
$$

where $\overline{A_{i}}=U \backslash A_{i}$ and $\bigcap_{i \in \emptyset}=U$.

## Inclusion-Exclusion Principle - intersection version

## Theorem 1 (IE-theorem - intersection version)

Let $U=A_{0}$ be a finite set, and let $A_{1}, \ldots, A_{k} \subseteq U$.

$$
\left|\bigcap_{i \in\{1, \ldots, k\}} A_{i}\right|=\sum_{J \subseteq\{1, \ldots, k\}}(-1)^{|J|}\left|\bigcap_{i \in J} \overline{A_{i}}\right|,
$$

where $\overline{A_{i}}=U \backslash A_{i}$ and $\bigcap_{i \in \emptyset}=U$.

## Proof sketch.

- An element $e \in \bigcap_{i \in\{1, \ldots, k\}} A_{i}$ is counted on the right only for $J=\emptyset$.
- An element $e \notin \bigcap_{i \in\{1, \ldots, k\}} A_{i}$ is counted on the right for all $J \subseteq I$, where $I$ is the set of indices $i$ such that $e \notin A_{i}$.
- counted negatively for each odd-sized $J \subseteq I$, and positively for each even-sized $J \subseteq I$
- a non-empty set has as many even-sized subsets as odd-sized subsets


## Outline

## (1) The Principle of Inclusion-Exclusion

(2) Counting Hamiltonian Cycles
(3) Coloring

4 Counting Set Covers
(5) Counting Set Partitions
(6) Further Reading

## Walks and cycles

- A walk of length $k$ in a graph $G=(V, E)$ (short, a $k$-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i \in\{0, \ldots, k-1\}$.



## Walks and cycles

- A walk of length $k$ in a graph $G=(V, E)$ (short, a $k$-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i \in\{0, \ldots, k-1\}$.
- A walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is closed if $v_{0}=v_{k}$.



## Walks and cycles

- A walk of length $k$ in a graph $G=(V, E)$ (short, a $k$-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i \in\{0, \ldots, k-1\}$.
- A walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is closed if $v_{0}=v_{k}$.
- A cycle is a 2 -regular subgraph of $G$.


$$
(a, d, c, b, a)
$$

## Walks and cycles

- A walk of length $k$ in a graph $G=(V, E)$ (short, a $k$-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i \in\{0, \ldots, k-1\}$.
- A walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is closed if $v_{0}=v_{k}$.
- A cycle is a 2 -regular subgraph of $G$.
- A Hamiltonian cycle of $G$ is a cycle of length $n=|V|$.


$$
(a, d, e, c, b, a)
$$

## \#Hamiltonian-Cycles

## \#HAMILTONIAN-CYCLES

Input: $\quad$ A graph $G=(V, E)$
Output: The number of Hamiltonian cycles of $G$


This graph has 2 Hamiltonian cycles.

## IE for \#Hamiltonian-Cycles

- $U$ : the set of closed $n$-walks starting at vertex 1
- $A_{v} \subseteq U$ : walks in $U$ that visit vertex $v \in V$
- $\Rightarrow$ number of Hamiltonian cycles is $\left|\bigcap_{v \in V} A_{v}\right|$
- To use the IE-theorem, we need to compute $\left|\bigcap_{v \in S} \overline{A_{v}}\right|$, the number of walks from $U$ in the graph $G-S$.


## A simpler problem

```
#ClOSED n-WALKS
    Input: An integer n, and a graph G=(V,E) on \leqn vertices
    Output: The number of closed n-walks in G starting at vertex 1
```


## A simpler problem

## \#Closed $n$-WALkS

Input: $\quad$ An integer $n$, and a graph $G=(V, E)$ on $\leq n$ vertices
Output: $\quad$ The number of closed $n$-walks in $G$ starting at vertex 1

## Dynamic programming

- $T[d, v]$ : number of $d$-walks starting at vertex 1 and ending at vertex $v$
- Base cases: $T[0,1]=1$ and $T[0, v]=0$ for all $v \in V \backslash\{1\}$
- DP recurrence: $T[d, v]=\sum_{u v \in E} T[d-1, u]$
- Table $T$ is filled by increasing $d$
- Return $T[n, 1]$ in $O\left(n^{3}\right)$ time


## Wrapping up

- Recall:
$U$ : set of closed $n$-walks starting at vertex 1
$A_{v}$ : set of closed $n$-walks that start at vertex 1 and visit vertex $v$
- By the IE-theorem, the number of Hamiltonian cycles is

$$
\left|\bigcap_{v \in V} A_{v}\right|=\sum_{S \subseteq V}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right|
$$

## Wrapping up

- Recall:
$U$ : set of closed $n$-walks starting at vertex 1
$A_{v}$ : set of closed $n$-walks that start at vertex 1 and visit vertex $v$
- By the IE-theorem, the number of Hamiltonian cycles is

$$
\left|\bigcap_{v \in V} A_{v}\right|=\sum_{S \subseteq V}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right|
$$

- We have seen that $\left|\bigcap_{v \in S} \overline{A_{v}}\right|$ can be computed in $O\left(n^{3}\right)$ time.
- So, $\sum_{S \subseteq V}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right|$ can be evaluated in $O\left(2^{n} n^{3}\right)$ time


## Wrapping up

- Recall:
$U$ : set of closed $n$-walks starting at vertex 1
$A_{v}$ : set of closed $n$-walks that start at vertex 1 and visit vertex $v$
- By the IE-theorem, the number of Hamiltonian cycles is

$$
\left|\bigcap_{v \in V} A_{v}\right|=\sum_{S \subseteq V}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right|
$$

- We have seen that $\left|\bigcap_{v \in S} \overline{A_{v}}\right|$ can be computed in $O\left(n^{3}\right)$ time.
- So, $\sum_{S \subseteq V}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right|$ can be evaluated in $O\left(2^{n} n^{3}\right)$ time


## Theorem 2

\#Hamiltonian-Cycles can be solved in $O\left(2^{n} n^{3}\right)$ time and polynomial space, where $n=|V|$.

## Outline

## (1) The Principle of Inclusion-Exclusion

(2) Counting Hamiltonian Cycles
(3) Coloring

4 Counting Set Covers
(5) Counting Set Partitions
(6) Further Reading

## Coloring

A $k$-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to $V$ such that no two adjacent vertices receive the same color.

```
Coloring
Input: Graph G, integer k
Question: Does }G\mathrm{ have a }k\mathrm{ -coloring?
```



## Coloring

A $k$-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to $V$ such that no two adjacent vertices receive the same color.

```
Coloring
    Input: Graph }G\mathrm{ , integer }
    Question: Does G}\mathrm{ have a k-coloring?
```


## Exercise

- Suppose $A$ is an algorithm solving Coloring in $O(f(n))$ time, $n=|V|$, where $f$ is non-decreasing.
- Design a $O^{*}(f(n))$ time algorithm $B$, which, for an input graph $G$, finds a coloring of $G$ with a minimum number of colors.


## IE formulation

## Observation: partitioning vs. covering

$$
\begin{aligned}
& G=(V, E) \text { has a } k \text {-coloring } \\
& \Leftrightarrow \\
& G \text { has independent sets } I_{1}, \ldots, I_{k} \text { such that } \bigcup_{i=1}^{k} I_{i}=V .
\end{aligned}
$$

## IE formulation

## Observation: partitioning vs. covering

$$
\begin{gathered}
G=(V, E) \text { has a } k \text {-coloring } \\
\Leftrightarrow \\
G \text { has independent sets } I_{1}, \ldots, I_{k} \text { such that } \bigcup_{i=1}^{k} I_{i}=V
\end{gathered}
$$

- $U$ : set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where each $I_{i}, i \in\{1, \ldots, k\}$, is an independent set


## IE formulation

## Observation: partitioning vs. covering

$$
\begin{gathered}
G=(V, E) \text { has a } k \text {-coloring } \\
\Leftrightarrow \\
G \text { has independent sets } I_{1}, \ldots, I_{k} \text { such that } \bigcup_{i=1}^{k} I_{i}=V
\end{gathered}
$$

- $U$ : set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where each $I_{i}, i \in\{1, \ldots, k\}$, is an independent set
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{i \in\{1, \ldots, k\}} I_{i}\right\}$


## IE formulation

## Observation: partitioning vs. covering

$$
\begin{gathered}
G=(V, E) \text { has a } k \text {-coloring } \\
\Leftrightarrow \\
G \text { has independent sets } I_{1}, \ldots, I_{k} \text { such that } \bigcup_{i=1}^{k} I_{i}=V \text {. }
\end{gathered}
$$

- $U$ : set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where each $I_{i}, i \in\{1, \ldots, k\}$, is an independent set
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{i \in\{1, \ldots, k\}} I_{i}\right\}$
- Note: $\left|\bigcap_{v \in V} A_{v}\right| \neq 0 \Leftrightarrow G$ has a $k$-coloring


## IE formulation

## Observation: partitioning vs. covering

$$
\begin{gathered}
G=(V, E) \text { has a } k \text {-coloring } \\
\Leftrightarrow \\
G \text { has independent sets } I_{1}, \ldots, I_{k} \text { such that } \bigcup_{i=1}^{k} I_{i}=V \text {. }
\end{gathered}
$$

- $U$ : set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where each $I_{i}, i \in\{1, \ldots, k\}$, is an independent set
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{i \in\{1, \ldots, k\}} I_{i}\right\}$
- Note: $\left|\bigcap_{v \in V} A_{v}\right| \neq 0 \Leftrightarrow G$ has a $k$-coloring
- To use the IE-theorem, we need to compute

$$
\left|\bigcap_{v \in S} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V \backslash S\right\}\right|
$$

## IE formulation

## Observation: partitioning vs. covering

$$
\begin{gathered}
G=(V, E) \text { has a } k \text {-coloring } \\
\Leftrightarrow \\
G \text { has independent sets } I_{1}, \ldots, I_{k} \text { such that } \bigcup_{i=1}^{k} I_{i}=V \text {. }
\end{gathered}
$$

- $U$ : set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where each $I_{i}, i \in\{1, \ldots, k\}$, is an independent set
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{i \in\{1, \ldots, k\}} I_{i}\right\}$
- Note: $\left|\bigcap_{v \in V} A_{v}\right| \neq 0 \Leftrightarrow G$ has a $k$-coloring
- To use the IE-theorem, we need to compute

$$
\begin{aligned}
\left|\bigcap_{v \in S} \overline{A_{v}}\right| & =\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V \backslash S\right\}\right| \\
& =s(V \backslash S)^{k}
\end{aligned}
$$

where $s(X)$ is the number of independent sets in $G[X]$

## A simpler problem

## \#IS of Induced Subgraphs

Input: $\quad$ A graph $G=(V, E)$
Output: $\quad s(X)$, the number of independent sets of $G[X]$, for each $X \subseteq V$

## A simpler problem

## \#IS of Induced Subgraphs

Input: $\quad$ A graph $G=(V, E)$
Output: $\quad s(X)$, the number of independent sets of $G[X]$, for each $X \subseteq V$

## Dynamic Programming

- $s(X)$ : the number of independent sets of $G[X]$
- Base case: $s(\emptyset)=1$
- DP recurrence: $s(X)=s\left(X \backslash N_{G}[v]\right)+s(X \backslash\{v\})$, where $v \in X$
- Table $s$ filled by increasing cardinalities of $X$
- Output $s(X)$ for each $X \subseteq V$ in time $O^{*}\left(2^{n}\right)$


## Wrapping up

Now, evaluate

$$
\left|\bigcap_{v \in V} A_{v}\right|=\sum_{S \subseteq V}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right|=\sum_{S \subseteq V}(-1)^{|S|} s(V \backslash S)^{k},
$$

in $O^{*}\left(2^{n}\right)$ time.
$G$ has a $k$-coloring iff $\left|\bigcap_{v \in V} A_{v}\right|>0$.

## Theorem 3 ([Bjørklund \& Husfeldt '06], [Koivisto '06])

Coloring can be solved in $O^{*}\left(2^{n}\right)$ time (and space).

## Corollary 4

For a given graph $G$, a coloring with a minimum number of colors can be found in $O^{*}\left(2^{n}\right)$ time (and space).

## ... polynomial space

Using an algorithm by [Gaspers, Lee, 2017], counting all independent sets in a graph on $n$ vertices in $O\left(1.2355^{n}\right)$ time, we obtain a polynomial-space algorithm for Coloring with running time

$$
\sum_{S \subseteq V} O\left(1.2355^{n-|S|}\right)=\sum_{s=0}^{n}\binom{n}{s} O\left(1.2377^{n-s}\right)=O\left(2.2355^{n}\right) .
$$

Here, we used the Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.

## Theorem 5

Coloring can be solved in $O\left(2.2355^{n}\right)$ time and polynomial space.

## Outline

## (1) The Principle of Inclusion-Exclusion

(2) Counting Hamiltonian Cycles
(3) Coloring

4 Counting Set Covers

## (5) Counting Set Partitions

(6) Further Reading

## Counting Set Covers

## \#Set Covers

Input: A finite ground set $V$ of elements, a collection $H$ of subsets of $V$, and an integer $k$
Output: The number of ways to choose a $k$-tuple of sets $\left(S_{1}, \ldots, S_{k}\right)$ with $S_{i} \in H, i \in\{1, \ldots, k\}$, such that $\bigcup_{i=1}^{k} S_{i}=V$.


This instance has $1 \cdot 3!=6$ covers with 3 sets and $3 \cdot 4!=72$ covers with 4 sets.
We consider, more generally, that $H$ is given only implicitly, but can be enumerated in $O^{*}\left(2^{n}\right)$ time and space.

## Algorithm for Counting Set Covers

- $U$ : set of $k$-tuples $\left(S_{1}, \ldots, S_{k}\right)$, where $S_{i} \in H, i \in\{1, \ldots, k\}$,
- $A_{v}=\left\{\left(S_{1}, \ldots, S_{k}\right) \in U: v \in \bigcup_{i \in\{1, \ldots, k\}} S_{i}\right\}$,
- the number of covers with $k$ sets is

$$
\begin{aligned}
\left|\bigcap_{v \in V} A_{v}\right| & =\sum_{S \subseteq V}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right| \\
& =\sum_{S \subseteq V}(-1)^{|S|} S(V \backslash S)^{k},
\end{aligned}
$$

where $s(X)$ is the number of sets in $H$ that are subsets of $X$.

## Compute

For each $X \subseteq V$, compute $s(X)$, the number of sets in $H$ that are subsets of $X$.

## Dynamic Programming

- Arbitrarily order $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
- $g[X, i]=\left|\left\{S \in H:\left(X \cap\left\{v_{i}, \ldots, v_{n}\right\}\right) \subseteq S \subseteq X\right\}\right|$
- Note: $g[X, n+1]=s(X)$
- Base case: $g[X, 1]= \begin{cases}1 & \text { if } X \in H \\ 0 & \text { otherwise. }\end{cases}$
- DP recurrence: $g[X, i]= \begin{cases}g[X, i-1] & \text { if } v_{i-1} \notin X \\ g\left[X \backslash\left\{v_{i-1}\right\}, i-1\right]+g[X, i-1] & \text { otherwise. }\end{cases}$
- Table filled by increasing $i$


## Compute

For each $X \subseteq V$, compute $s(X)$, the number of sets in $H$ that are subsets of $X$.

## Dynamic Programming

- Arbitrarily order $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
- $g[X, i]=\left|\left\{S \in H:\left(X \cap\left\{v_{i}, \ldots, v_{n}\right\}\right) \subseteq S \subseteq X\right\}\right|$
- Note: $g[X, n+1]=s(X)$
- Base case: $g[X, 1]= \begin{cases}1 & \text { if } X \in H \\ 0 & \text { otherwise. }\end{cases}$
- DP recurrence: $g[X, i]= \begin{cases}g[X, i-1] & \text { if } v_{i-1} \notin X \\ g\left[X \backslash\left\{v_{i-1}\right\}, i-1\right]+g[X, i-1] & \text { otherwise. }\end{cases}$
- Table filled by increasing $i$


## Theorem 6

\#Set Covers can be solved in $O^{*}\left(2^{n}\right)$ time and space, where $n=|V|$.

## Outline

## (1) The Principle of Inclusion-Exclusion

(2) Counting Hamiltonian Cycles
(3) Coloring

4 Counting Set Covers
(5) Counting Set Partitions
(6) Further Reading

## Counting Set Partitions

## \#Ordered Set Partitions

Input: A finite ground set $V$ of elements, a collection $H$ of subsets of $V$, and an integer $k$
Output: The number of ways to choose a $k$-tuple of pairwise disjoint sets $\left(S_{1}, \ldots, S_{k}\right)$ with $S_{i} \in H, i \in\{1, \ldots, k\}$, such that $\bigcup_{i=1}^{k} S_{i}=V$. (Now, $S_{i} \cap S_{j}=\emptyset$, if $i \neq j$.)


This instance has $1 \cdot 3!=6$ ordered partitions with 3 sets.

## Algorithm

Using a similar approach:
Theorem 7
\#Ordered Set Partitions can be solved in $O^{*}\left(2^{n}\right)$ time and space.

## Algorithm

Using a similar approach:

## Theorem 7

\#Ordered Set Partitions can be solved in $O^{*}\left(2^{n}\right)$ time and space.

## Corollary 8

There is an algorithm computing the number of $k$-colorings of an input graph on $n$ vertices in $O^{*}\left(2^{n}\right)$ time and space.

## Covering and partitioning in polynomial space

## Theorem 9

The number of covers with $k$ sets and the number of ordered partitions with $k$ sets of a set system $(V, H)$ can be computed in polynomial space and

## Covering and partitioning in polynomial space

## Theorem 9

The number of covers with $k$ sets and the number of ordered partitions with $k$ sets of a set system ( $V, H$ ) can be computed in polynomial space and
(1) $O^{*}\left(2^{n}|H|\right)$ time, assuming that $H$ can be enumerated in $O^{*}(|H|)$ time and polynomial space

## Covering and partitioning in polynomial space

## Theorem 9

The number of covers with $k$ sets and the number of ordered partitions with $k$ sets of a set system ( $V, H$ ) can be computed in polynomial space and
(1) $O^{*}\left(2^{n}|H|\right)$ time, assuming that $H$ can be enumerated in $O^{*}(|H|)$ time and polynomial space
(2) $O^{*}\left(3^{n}\right)$ time, assuming membership in $H$ can be decided in polynomial time, and

## Covering and partitioning in polynomial space

## Theorem 9

The number of covers with $k$ sets and the number of ordered partitions with $k$ sets of a set system ( $V, H$ ) can be computed in polynomial space and
(1) $O^{*}\left(2^{n}|H|\right)$ time, assuming that $H$ can be enumerated in $O^{*}(|H|)$ time and polynomial space
(2) $O^{*}\left(3^{n}\right)$ time, assuming membership in $H$ can be decided in polynomial time, and
(0) $\sum_{j=0}^{n}\binom{n}{j} T_{H}(j)$ time, assuming there is a $T_{H}(j)$ time and polynomial space algorithm to count for any $W \subseteq V$ with $|W|=j$ the number of sets $S \in H$ satisfying $S \cap W=\emptyset$.

## Outline

(1) The Principle of Inclusion-Exclusion
(2) Counting Hamiltonian Cycles
(3) Coloring

4 Counting Set Covers
(5) Counting Set Partitions
(6) Further Reading

## Reading

- Chapter 4, Inclusion-Exclusion in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion. Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP 2011): 42-59, 2011.


## Advanced Reading

- Chapter 7, Subset Convolution in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

