KR is first and foremost about <u>knowledge</u>

meaning and entailment

find individuals and properties, then encode facts sufficient for entailments

Before implementing, need to understand clearly

- what is to be computed?
- why and where inference is necessary?

Example domain: soap-opera world

people, places, companies, births, marriages, divorces, deaths, events, ...

Task: KB with appropriate entailments

- what vocabulary?
- what facts to represent?

Domain-dependent predicates and functions

main question:

what are the individuals?

here: people, places, companies, ...

named individuals

john, countryTown, faultyInsuranceCorp, fic, johnQsmith, ...

basic types

Person, Place, Man, Woman, ...

attributes

Rich, Beautiful, Unscrupulous, ...

relationships

LivesAt, MarriedTo, DaughterOf, HairDresserOf, HadAnAffairWith, Blackmails, ...

functions

fatherOf, ceoOf, bestFriendOf, ...

Usually atomic sentences and negations

type facts

Man(john), Woman(jane), Company(faultyInsuranceCorp)

property facts

Rich(john),

-HappilyMarried(jim),

WorksFor(jim,fic)

equality facts

john = ceoOf(fic), fic = faultyInsuranceCorp, bestFriendOf(jim) = john

Like a simple database

could store these facts in relational tables

Complex facts

Universal abbreviations

 $\forall y [Woman(y) \land y \neq jane \supset Loves(y, john)]$

 $\forall y[\operatorname{Rich}(y) \land \operatorname{Man}(y) \supset \operatorname{Loves}(y, \operatorname{jane})]$

 $\forall x \forall y [Loves(x,y) \supset \neg Blackmails(x,y)]$

possible to express without quantifiers

Incomplete knowledge

 $Loves(jane,john) \lor Loves(jane,jim) \\ which?$

 $\exists x [Adult(x) \land Blackmails(x, john)]$ who?

cannot write down more complete version

Closure axioms

 $\forall x [Person(x) \supset x = jane \lor x = john \lor x = jim ...]$

 $\forall x \forall y [MarriedTo(x,y) \supset \dots]$

 $\forall x [x=fic \lor x=jane \lor x=john \lor x=jim \dots]$

limits domain of discourse

also useful to have jane \neq john ...

Terminological facts

General relationships among predicates. For example:

disjoint

```
\forall x [\text{Mammal}(x) \supset \neg \text{Reptile}(x)]
```

subtype

 $\forall x [Mammal(x) \supset Animal(x)]$

exhaustive

 $\forall x[\text{Day}(x) \supset \text{Monday}(x) \lor \ldots \lor \text{Sunday}(x)]$

symmetry

 $\forall x \forall y \ [\text{RelatedTo}(x,y) \supset \text{RelatedTo}(y,x)]$

inverse

 $\forall x \forall y$ [ChildOf(*x*,*y*) \supset ParentOf(*y*,*x*)]

type restriction

 $\forall x \forall y \text{ [MarriedTo}(x,y) \supset \\ \text{Person}(x) \land \text{Person}(y) \text{]}$

full definition

 $\forall x [\text{RichMan}(x) \equiv \text{Rich}(x) \land \text{Man}(x)]$

Usually universally quantified conditionals or biconditionals

Is there a company whose CEO loves Jane?

 $\exists x [Company(x) \land Loves(ceoOf(x), jane)] ??$

Suppose $I \models KB$.

Then $I \models \text{Rich(john)}$, Man(john), and $I \models \forall y[\text{Rich}(y) \land \text{Man}(y) \supset \text{Loves}(y,\text{jane})]$ so $I \models \text{Loves}(\text{john},\text{jane})$.

Also *I* |= john = ceoOf(fic),

so $I \models Loves(ceoOf(fic), jane).$

Finally *I* |= Company(faultyInsuranceCorp),

and $I \models fic = faultyInsuranceCorp$,

so *I* |= Company(fic).

Thus, *I* |= Company(fic) \land Loves(ceoOf(fic),jane),

and so

 $I \models \exists x [Company(x) \land Loves(ceoOf(x), jane)].$

Can extract identity of company from this proof

If no man is blackmailing John, then is he being blackmailed by somebody he loves?

 $\forall x[Man(x) \supset \neg Blackmails(x, john)] \supset$ $\exists y [Loves(john,y) \land Blackmails(y,john)]$?? Note: KB |= ($\alpha \supset \beta$) iff KB $\cup \{\alpha\}$ |= β Assume: $I \models KB \cup \{\forall x[Man(x) \supset \neg Blackmails(x, john)]\}$ $I \models \exists y [Loves(john,y) \land Blackmails(y,john)]$ Show: $\exists x [Adult(x) \land Blackmails(x,john)]$ Have: $\forall x [\operatorname{Adult}(x) \supset \operatorname{Man}(x) \lor \operatorname{Woman}(x)]$ and $\exists x [Woman(x) \land Blackmails(x, john)].$ SO Then: $\forall y[\operatorname{Rich}(y) \land \operatorname{Man}(y) \supset \operatorname{Loves}(y, \operatorname{jane})]$ $Rich(john) \wedge Man(john)$ and Loves(john,jane)! SO $\forall y[Woman(y) \land y \neq jane \supset Loves(y, john)]$ But: $\forall x \forall y [Loves(x,y) \supset \neg Blackmails(x,y)]$ and $\forall y [Woman(y) \land y \neq jane \supset \neg Blackmails(y, john)]$ SO Blackmails(jane,john) and... Finally: Loves(john,jane) \land Blackmails(jane,john)

SO: $\exists y [Loves(john,y) \land Blackmails(y,john)]$

Proof as sequence of sentences

What individuals?

Sometimes useful to reduce n-ary predicates to 1-place predicates and 1-place functions

- · involves reifying properties: new individuals
- typical of description logics / frame languages
 (later)

Flexibility in terms of arity:

Purchases(john,sears,bike) or Purchases(john,sears,bike,feb14) or Purchases(john,sears,bike,feb14,\$100)

Instead introduce purchase objects

Purchase(p) \land agent(p)=john \land obj(p)=bike \land source(p)=sears \land amount(p)=... \land ...

allows purchase to be described at various levels of detail

Complex relationships:

MarriedTo(x,y)VS.PreviouslyMarriedTo(x,y)VS.ReMarriedTo(x,y)VS.

Define marital status in terms of existence of marriages and divorces.

Marriage(m) \land partner1(m)=x \land partner2(m)=y \land date(m)=... \land witness(m)=... \land ... Also need individuals for numbers, dates, times, addresses, etc.

objects about which we ask wh-questions

Quantities as individuals

age(suzy) = 14 age-in-years(suzy) = 14 age-in-months(suzy) = 168

perhaps better to have an object for the age of Suzy, whose value in years is 14

years(age(suzy)) = 14

months(x) = 12*years(x)

centimeters(x) = 100*meters(x)

Similarly with locations and times

instead of

```
time(m)="Jan 5 1992 4:47:03EST"
```

can use

time(m)= $t \land year(t)=1992 \land ...$

Statistical / probabilistic facts

- Half of the companies are located on the East Side.
- Most of the employees are restless.
- · Almost none of the employees are completely trustworthy,

Default / prototypical facts

- Company presidents typically have secretaries intercepting their phone calls.
- · Cars have four wheels.
- Companies generally do not allow employees that work together to be married.

Intentional facts

- John believes that Henry is trying to blackmail him.
- Jane does not want Jim to think that she loves John.

Others ...