A NOTE ON THE CIRCULAR JAIL EXERCISE

MANAS PATRA

In this short note, we discuss the lab exercise "circular jail". You were asked to write a program that enumerates the cell doors that are left open. A little reflection shows that a cell door $1 \leq n \leq 100$ is left open if and only if the number of factors of n is odd. In the first round, every door is opened (1 divides every number), in the second round every even-numbered door is closed and so on. For example, let $n=12$. The status of the 12 th door will change in rounds 1,2 , $3,4,6$ and 12 . The number of factors is 6 and you can easily see that it will be closed (obviously it will not be affected after round 12). For a positive integer n, let $F(n)$ denote the number of factors of n including 1 and n. Note the following facts.
(1) If two positive integers m and n are relatively prime (have no common factors) then $F(m n)=F(m) F(n)$. This is true because any factor of $m n$ must be of the form $a b$ where a is factor of m and b is factor of n. This is not true in general if m and n have common factors >1.
(2) If $n=p^{k}$ where p is a prime number, then the factors are $1, p, p^{2}, \ldots, p^{k}$. Thus $F(n)=k+1 . F(n)$ is odd if and only if k is even, that is, n is a perfect square.
(3) Any positive integer can be (uniquely) written as a product prime powers. This means that

$$
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}
$$

where p_{1}, p_{2}, \ldots are distinct prime numbers and $k_{i}>0$. So $p_{i}^{k_{i}}$ and $p_{j}^{k_{j}}$ are relatively prime. Hence

$$
F(n)=F\left(p_{1}^{k_{1}}\right) F\left(p_{2}^{k_{2}}\right) \cdots F\left(p_{r}^{k_{r}}\right)
$$

Consequently, $F(n)$ is odd if and only if all the numbers $F\left(p_{j}^{k_{j}}\right), j=1,2, \ldots, r$ are odd. From the second item, this is possible if and only if all k_{j} are even. That is, n is perfect square. Hence a cell-door n will remain open if and only if n is perfect square.
A straightforward way of doing the exercise would involve two loops-the first one for each run of the drunken jailer and the second for implementing his crazy behaviour. So the time complexity is of order n^{2} where n is the number of doors (100 in this case). But if we use the criterion that the door numbers must be perfect squares we have to only compute at most \sqrt{n} times: find the squares of the numbers up to the largest whole number $\leq \sqrt{n}$. So doing a little maths, we have reduced complexity drastically!.

COMP9021 Principles of Programming

