A NOTE ON THE CIRCULAR JAIL EXERCISE

MANAS PATRA

In this short note, we discuss the lab exercise ”circular jail”. You were asked to write a program that enumerates the
cell doors that are left open. A little reflection shows that a cell door 1 < n < 100 is left open if and only if the number
of factors of n is odd. In the first round, every door is opened (1 divides every number), in the second round every
even-numbered door is closed and so on. For example, let n = 12. The status of the 12th door will change in rounds 1, 2,
3, 4, 6 and 12. The number of factors is 6 and you can easily see that it will be closed (obviously it will not be affected
after round 12). For a positive integer n, let F'(n) denote the number of factors of n including 1 and n. Note the following
facts.

(1) If two positive integers m and n are relatively prime (have no common factors) then F(mn) = F(m)F(n). This
is true because any factor of mn must be of the form ab where a is factor of m and b is factor of n . This is not
true in general if m and n have common factors > 1.

(2) If n = p* where p is a prime number, then the factors are 1,p,p?,...,p*. Thus F(n) =k + 1. F(n) is odd if and
only if k is even, that is, n is a perfect square.

(3) Any positive integer can be (uniquely) written as a product prime powers. This means that

ki k Ky
n=py'py’ Py

where p1,pa, ... are distinct prime numbers and k; > 0. So pf and pfj are relatively prime. Hence
F(n) = F(p{")F(p5?) -+ F(p}r)

Consequently, F(n) is odd if and only if all the numbers F(p?j), j=1,2,...,r are odd. From the second item, this is
possible if and only if all k; are even. That is, n is perfect square. Hence a cell-door n will remain open if and only if n
is perfect square.

A straightforward way of doing the exercise would involve two loops—the first one for each run of the drunken jailer and
the second for implementing his crazy behaviour. So the time complexity is of order n? where n is the number of doors
(100 in this case). But if we use the criterion that the door numbers must be perfect squares we have to only compute at
most /n times: find the squares of the numbers up to the largest whole number < y/n. So doing a little maths, we have
reduced complexity drastically!.

COMP9021 PRINCIPLES OF PROGRAMMING

Date: Session 2, 2015.



