Exercise 1. A dominating set of a graph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.

Degree-5 Dominating Set

Input: A graph $G = (V, E)$ with maximum degree at most 5 and an integer k

Parameter: k

Question: Does G have a dominating set of size at most k?

Design a linear kernel for Degree-5 Dominating Set.

Exercise 2. Consider the following problem.

Point Line Cover

Input: A set of points P in \mathbb{Z}^2, and an integer k

Parameter: k

Question: Is there a set L of at most k lines in \mathbb{R}^2 such that each point in P lies on at least one line in L?

Example: $(P = \{(-1,-2), (0,0), (1,-1), (1,1), (1,2), (1,3), (1,4), (2,4)\}, k = 2)$ is a Yes-instance since the lines $y = 1$ and $y = 2x$ cover all the points.

Show that Point Line Cover has a polynomial kernel.

Exercise 3. A cluster graph is a graph where every connected component is a complete graph.

Cluster Editing

Input: Graph $G = (V, E)$, integer k

Parameter: k

Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?

1. Show that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices).

2. Design a kernel for Cluster Editing with $O(k^2)$ vertices.
Exercise 4. A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ if $uv \in E$.

<table>
<thead>
<tr>
<th>SAVING COLORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Graph G, integer k</td>
</tr>
<tr>
<td>Parameter: k</td>
</tr>
<tr>
<td>Question: Does G have a $(n - k)$-coloring?</td>
</tr>
</tbody>
</table>

Design a kernel for SAVING COLORS with $O(k)$ vertices. Recommendation: use the Crown Lemma.

Exercise 5. An edge clique cover of a graph G is a set of cliques in G so that each edge of G is contained in at least one of these cliques.

<table>
<thead>
<tr>
<th>EDGE CLIQUE COVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: graph G, integer k</td>
</tr>
<tr>
<td>Parameter: k</td>
</tr>
<tr>
<td>Question: Does G have an edge clique cover with k cliques?</td>
</tr>
</tbody>
</table>

Design a kernel for EDGE CLIQUE COVER with $O(2^k)$ vertices.