
COMP1511 - Programming 
Fundamentals

Week 7 - Lecture 11



What did we cover last time?
Characters and Strings

● Using letters as variables
● Using arrays of letters
● Some useful library functions

Command Line Arguments

● Reading strings from the command line



What are we covering today?
Memory

● How functions work in memory
● Direct use of memory in C

Structs

● Making custom variables
● Collections of variables that aren't all the same type



Functions and Memory - a recap
What actually gets passed to a function?

● Everything gets passed "by value"
● Variables are copied by the function
● The function will then work with their own versions of the variables



What happens to variables passed to functions?
int main (void) {
    int x = 5;
    doubler(x);
    printf("x is %d.\n", x,);
    // "x is 5"
    // this is because the doubler function takes the value 5 from x
    // and copies it into the variable "number" which is a new variable
    // that only lasts as long as the doubler function runs
}

void doubler(int number) {
    number = number * 2;
}



Functions and Pointers
What happens to pointers that are 
passed to functions?

● Everything gets passed "by value"
● But the value of a pointer is a 

memory address!
● The memory address will be copied 

into the function
● This means both pointers are 

accessing the same variable!
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Functions and Pointers
int main (void) {
    int x = 5;
    int *pointer_x = &x;
    double_pointer(pointer_x);
    printf("x is %d.\n", x);
    // "x is 10"
    // This is because double_pointer gets given access to x via its
    // copied pointer . . . since it changes what's at the other end of
    // that pointer, it affects x
}

// Double the value of the variable the pointer is aiming at
void double_pointer(int *num_pointer) {
    *num_Pointer = *num_pointer * 2;
}



Arrays are represented as memory addresses
Arrays and pointers are very similar

● An array is a variable
● It's not actually a variable containing all 

the elements
● When we use the array variable (no []), 

it's actually the memory address of the 
start of the elements

● Arrays and pointers are nearly identical 
when passed to functions 
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Functions and Arrays
int main (void) {    
    int numbers[3] = {1,2,3};
    double_all(3, numbers);
    printf("Array is: ");
    int i = 0;
    while(i < 3) {
        printf("%d ", numbers[i]);
        i++;
    }
    printf("\n");
    // "Array is 2 4 6"
    // Since passing an array to a function will pass the address
    // of the array, any changes made in the function will be made
    // to the original array
}



Functions and Arrays continued

// Double all the elements of a given array
void double_all(int length, int numbers[]) {
    int i = 0;
    while(i < length) {
        numbers[i] = numbers[i] * 2;
        i++;
    }
}



Memory in Functions
What happens to variables we create inside functions?
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Memory in Functions
What happens to variables we create inside functions?

4. A program's memory (not to 
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Keeping memory available
What if we want to create something in a function?

● We often want to run functions that create data
● We can't always pass it back as an output

// Make an array and return its address
int *create_array() {
    int numbers[10] = {};
    return numbers;
}
// This example will return a pointer to memory that we no longer have!



Memory Allocation
C has the ability to allocate memory

● A function called malloc(bytes) returns a pointer to memory
● Allows us to take control of a block of memory

● This won't automatically be cleaned up when a function ends
● To clean up the memory, we call free(pointer)
● free() will use the pointer to find our previous memory to clean it up



What malloc() does
Using malloc, we can assign some memory that is not tied to a function
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Malloc() in code
We can assign a particular amount of memory for use

● The operator sizeof allows us to see how many bytes a variable needs
● We can use sizeof to allocate the correct amount of memory

// Allocate memory for a number and return a pointer to them
int *malloc_number() {
    int *int_pointer = malloc(sizeof (int));
    *int_pointer = 10;
    return int_pointer;
}
// This example will return a pointer to memory we can use



Cleaning up after ourselves
Allocated memory is never cleaned up automatically

● We need to remember to use free()
● Every pointer that is aimed at allocated memory must be freed!

// Use an allocated variable via its pointer then free it
int main(void) {
    int *int_pointer = malloc_number();
    
    *int_pointer += 25;

    free(int_pointer);
    return 0;
}



Freeing up memory
Calling free will clean up the allocated memory that we're finished with
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Using memory
Some things to think about with malloc() and free()

● You can use sizeof() to figure out how many bytes something needs
● We can malloc() any variables (but arrays are a bit complicated)
● In general, always use sizeof() with malloc()

● Anything allocated with malloc() must be free() after you've finished 
with it

● Otherwise we get what's known as memory leaks!
● dcc --leak-check can be used to tell you if you have any memory leaks



Break Time
Memory allocation is tricky

● It's easy to forget what 
you've allocated

● Then you might forget to 
free it!



Structs
A new way of collecting variables together

● Structs (short for structures) are a way to create custom variables
● Structs are variables that are made up of other variables
● They are not limited to a single type like arrays
● They are also able to name their variables
● Structs are like the bento box of variable collections



Before we can use a struct . . .
Structs are like creating our own variable type

● We need to declare this type before any of the functions that use it
● We declare what a struct is called and what the fields (variables) are

struct bender {
    char name[MAX_LENGTH];
    char element[MAX_LENGTH];
    int power;
};



Creating a struct variable and accessing its fields
Declaring and populating a struct variable

● Declaring a struct: "struct struct_name variable_name;"
● Use the . to access any of the fields inside the struct by name

int main(void) {
    struct bender avatar;
    strcpy(avatar.name, "Aang");
    strcpy(avatar.element, "Air");
    avatar.power = 10;

    printf("%s's element is: %s.\n", avatar.name, avatar.element);
}



Accessing Structs through pointers
Pointers and structs go together so often that they have a shorthand!

-> is a new shorthand that avoids possible mistakes in dereferencing

    struct bender *last_airbender = &avatar;
    
    // knowledge of pointers suggests using this
    (*last_airbender).power = 100;

    // but there's another symbol that automatically
    // dereferences the pointer and accesses a field
    // inside the struct
    last_airbender->power = 100;



Pointers and Structs
We often use pointers and structs together

● We use -> to access fields when we have a pointer to a struct
● We often pass pointers to structs into functions

void display_person(struct bender *person) {
    printf("Name: %s\n", person->name);
    printf("Element: %s\n", person->element);
    printf("Power: %d\n", person->power);
}



Structs as Variables
Structs can be treated as variables

● Yes, this means arrays of structs are possible
● It also means structs can be some of the variables inside other structs
● In general, it means that once you've defined what a struct is, you use it 

like any other variable



Benders - an example of structs and malloc
We want to form a team of people with special elemental powers

● We'd like to have a struct that can represent an individual
● Then we'd like to build up a team
● We'll maintain an array of pointers
● And allocate memory for the team members



Create Structs for Characters
Create a struct to allow us to represent the characters

We'll borrow the one we created earlier

struct bender {
    char name[MAX_LENGTH];
    char element[MAX_LENGTH];
    int power;
};



Building up a team
We could actually do this with another struct!

We can make a struct that has an array of pointers to other structs

struct team {
    char name[MAX_LENGTH];
    int num_members;
    struct bender *team_members[TEAM_SIZE];
};



Creating a bender with a function
A function to allocate memory for a struct and give us a pointer to it

struct bender *create_bender(char *b_name, char *b_element, int b_power) {
    struct bender *new_bender = malloc(sizeof (struct bender));
    
    strcpy(new_bender->name, b_name);
    strcpy(new_bender->element, b_element);
    new_bender->power = b_power;
    
    return new_bender;
}



Setting up our structures in memory
We can use malloc in a very similar way to declaring a variable

    // allocate the memory for one instance of benders
    struct team *benders = malloc(sizeof (struct team));
    strcpy(benders->name, "Avatar's team");

    // Assigning the result of createBender to each element
    // of benders's team_members array.
    benders->team_members[0] = createBender("Aang", "Air", 10);
    benders->num_members = 1;
    benders->team_members[1] = createBender("Katara", "Water", 6);
    benders->num_members++;
    benders->team_members[2] = createBender("Sokka", "None", 2);
    benders->num_members++;



Using structs without memory allocation
We can also use structs like regular variables

● Remember that accessing fields is different depending on whether you're 
using a pointer or not

● Accessing through a pointer: ->
● Accessing a variable: .

    // And an example of creating a struct without using 
    // memory allocation.
    struct bender zuko;
    strcpy(zuko.name, "Prince Zuko");
    strcpy(zuko.element, "Fire");
    zuko.power = 9;



Printing the contents
A function to print out the team. This only needs one pointer as input!

// print_team will print out the details of the team members
// to the terminal. It will not change the team.
void print_team(struct team *print_team) {
    printf("Team name is %s\n", print_team->name);
    int i = 0;
    while (i < print_team->num_members) {
        printf("Team member %s uses the element: %s\n", 
               print_team->team_members[i]->name,
               print_team->team_members[i]->element
        );
        i++;
    }
}



What's left? There's memory left!
We still have allocated memory that we haven't given back!

● Every allocated piece of memory must be freed before the program ends
● This means we'd have to free all the members of the team
● And also the team itself
● dcc benders.c -o benders --leakcheck
● This command will create a version of the program that will check for 

memory leaks (unfreed memory allocations)



Some code for freeing memory
We can run a function that will clean up the memory for a team

// free_team will free all the memory used for a team.
// It will first free all members, then the team itself
void free_team(struct team *f_team) {
    int i = 0;
    while (i < f_team->num_members) {
        free(f_team->team_members[i]);
        i++;
    }
    free(f_team);
}



What did we learn today?
Functions and Memory

● How functions have their own piece of memory
● How we lose access to anything in a function once it returns
● How we can specifically allocate memory

Structs

● Making our own custom variable types
● These can be collections of different types of variables


