
COMP1511 - Programming 
Fundamentals

Term 3, 2020 - Lecture 14



What did we learn yesterday?
Linked Lists

● Some Revision
● Building Lists
● Insertion into Lists



What are we doing today?
More Linked Lists

● Finding something in a list
● Insertion to keep a list alphabetical
● Linked List Removal
● Freeing our Allocated Memory
● Playing the game



Insertion with some conditions
We can now insert into any position in a Linked List

● We can read the data in a node and decide whether we want to insert 
before or after it

● Let's insert our elements into our list based on alphabetical order
● We're going to use a string.h function, strcmp() for this
● strcmp() compares two strings, and returns

○ 0 if they're equal
○ negative if the first has a lower ascii value than the second
○ positive if the first has a higher ascii value than the second



Finding where to insert
We're going to loop through the list

● This loop assumes the list is already in alphabetical order
● Each time we loop, we're going to keep track of the previous player
● We'll test the name of each player using strcmp() 
● We stop looping once we find the first name that's "higher" than ours
● Then we insert before that player



Finding the insertion point
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Inserting into a list Alphabetically
struct player *insertAlphabetical(char newName[], struct player* head) {
    struct player *previous = NULL;
    struct player *p = head;
    // Loop through the list and find the right place for the new name
    while (p != NULL && strcmp(newName, p->name) > 0) {
        previous = p;
        p = p->next;
    }
    struct player *insertionPoint = insert(newName, previous);
    // Return the head of the list (even if it has changed)
    if (previous == NULL) { // we inserted at the start of the list       
        insertionPoint->next = p;
        return insertionPoint;
    } else {
        return head;
    }
}



Removing a player
If we want to remove a specific player

● We need to look through the list and see if a player name matches the 
one we want to remove

● To remove, we'll use next pointers to connect the list around the player 
node

● Then, we'll free the node itself that we don't need anymore



Removing a player node
If we want to remove the Second Player
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Skipping the player node
Alter the First Player's next to bypass the player node we're removing
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Freeing the removed node
Free the memory from the now bypassed player node

A program's memory (not to scale)
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Break Time
Keeping track of your own code projects

● Using git is a really handy way to keep backups of 
your work

● GitHub and BitBucket are two providers that will 
give you free online repositories to store your code

● Graphical Interfaces are available for git (GitHub 
Desktop and Sourcetree respectively)

● It takes some time to get familiar with how these 
work . . . but you can start practicing now!



Finding the right player

struct player *removePlayer(char name[], struct player* head) {
    struct player *previous = NULL;
    struct player *current = head;
    // Keep looping until we find the matching name
    while (current != NULL && strcmp(name, current->name) != 0) {
        previous = current;
        current = current->next;
    }
    if (current != NULL) {
        // if current isn't NULL, we found the right player

Loop until you find the right match

This is very similar to finding the insertion point earlier



Removing a player

if (current != NULL) {
        // if current isn't NULL, we found the right player
        if (previous == NULL) {
            // it's the first player
            head = current->next;
        } else {
            previous->next = current->next;
        }        
        free(current);

}
    return head;
}

Having found the player node, remove it from the list



The Battle Royale
In a Battle Royale, people are removed from the game one at a time until 
only one person is left. They are the winner

● We can create a list of players
● We can make sure it's in a nice alphabetical order
● We can remove a single player from the list
● Now we need to remove players one at a time
● When there's only one left, they are the winner!



Game code
Once our list is created, we can loop through the game

● We print out the player list (we might want to modify that function!)
● Our user will tell us who was knocked out

    // A game loop that runs until only one player is left
    while (printPlayers(head) > 1) {
        printf("Who just got knocked out?\n");
        char koName[MAX_NAME_LENGTH];
        fgets(koName, MAX_NAME_LENGTH, stdin);
        koName[strlen(koName) - 1] = '\0';
        head = removePlayer(koName, head);
        printf("----------\n");
    }
    printf("The winner is: %s\n", head->name); 



Cleaning Up
Remember, All memory allocated (malloc) needs to be freed

● We can run dcc --leak-check to see whether there's leaking memory
● What do we find?
● There are pieces of memory we've allocated that we're not freeing!

Let's write a function that frees a whole linked list

● Loop through the list, freeing the nodes
● Just be careful not to free one that we still need the pointer from!



Looping to free nodes
A program's memory (not to scale)
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Looping to free nodes
A program's memory (not to scale)
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Looping to free nodes
A program's memory (not to scale)
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Code to free a linked list
// Loop through a list and free all the allocated memory
void freeList(struct node *n) {
    while(n != NULL) {
        // keep track of the current node
        struct node *remNode = head;
        
        // move the looping pointer to the next node 
        n = n->next;
        
        // free the current node
        free(remNode);
    }
}



Battle Royale, the Linked Lists demo
What have we written in this program?

● Creation of nodes
● Looping through a list
● Insertion of nodes into specific locations
● Finding locations using loops
● Removal of nodes
● Managing memory



What did we cover today?
Linked Lists

● Finding a particular node for insertion
● Removal
● Removing a specific node
● Memory cleaning


