
COMP1511 - Programming
Fundamentals

Term 3, 2020 - Lecture 14

What did we learn yesterday?
Linked Lists

● Some Revision
● Building Lists
● Insertion into Lists

What are we doing today?
More Linked Lists

● Finding something in a list
● Insertion to keep a list alphabetical
● Linked List Removal
● Freeing our Allocated Memory
● Playing the game

Insertion with some conditions
We can now insert into any position in a Linked List

● We can read the data in a node and decide whether we want to insert
before or after it

● Let's insert our elements into our list based on alphabetical order
● We're going to use a string.h function, strcmp() for this
● strcmp() compares two strings, and returns

○ 0 if they're equal
○ negative if the first has a lower ascii value than the second
○ positive if the first has a higher ascii value than the second

Finding where to insert
We're going to loop through the list

● This loop assumes the list is already in alphabetical order
● Each time we loop, we're going to keep track of the previous player
● We'll test the name of each player using strcmp()
● We stop looping once we find the first name that's "higher" than ours
● Then we insert before that player

Finding the insertion point

Player

Next

A

Player

Next

C

Player

Next

E

Player

Next

S
head
points
at the
first
player

NULL

D

Attempting to insert a player with name: "D" into a sorted
list while maintaining the alphabetical order

loop stops here

Insert between these two players

loop starts here

Inserting into a list Alphabetically
struct player *insertAlphabetical(char newName[], struct player* head) {
 struct player *previous = NULL;
 struct player *p = head;
 // Loop through the list and find the right place for the new name
 while (p != NULL && strcmp(newName, p->name) > 0) {
 previous = p;
 p = p->next;
 }
 struct player *insertionPoint = insert(newName, previous);
 // Return the head of the list (even if it has changed)
 if (previous == NULL) { // we inserted at the start of the list
 insertionPoint->next = p;
 return insertionPoint;
 } else {
 return head;
 }
}

Removing a player
If we want to remove a specific player

● We need to look through the list and see if a player name matches the
one we want to remove

● To remove, we'll use next pointers to connect the list around the player
node

● Then, we'll free the node itself that we don't need anymore

Removing a player node
If we want to remove the Second Player

A program's memory (not to scale)

First Player

Next

Marc

Third
Player

Next

Goku
NULLhead

Second
Player

Next

Tom

Skipping the player node
Alter the First Player's next to bypass the player node we're removing

A program's memory (not to scale)

First Player

Next

Marc

Third
Player

Next

Goku
NULLhead

Second
Player

Next

Tom

First Player bypasses
Second Player

Freeing the removed node
Free the memory from the now bypassed player node

A program's memory (not to scale)

First Player

Next

Marc

Third
Player

Next

Goku
NULLhead

Second
Player

Next

Tom

Free this node

Break Time
Keeping track of your own code projects

● Using git is a really handy way to keep backups of
your work

● GitHub and BitBucket are two providers that will
give you free online repositories to store your code

● Graphical Interfaces are available for git (GitHub
Desktop and Sourcetree respectively)

● It takes some time to get familiar with how these
work . . . but you can start practicing now!

Finding the right player

struct player *removePlayer(char name[], struct player* head) {
 struct player *previous = NULL;
 struct player *current = head;
 // Keep looping until we find the matching name
 while (current != NULL && strcmp(name, current->name) != 0) {
 previous = current;
 current = current->next;
 }
 if (current != NULL) {
 // if current isn't NULL, we found the right player

Loop until you find the right match

This is very similar to finding the insertion point earlier

Removing a player

if (current != NULL) {
 // if current isn't NULL, we found the right player
 if (previous == NULL) {
 // it's the first player
 head = current->next;
 } else {
 previous->next = current->next;
 }
 free(current);

}
 return head;
}

Having found the player node, remove it from the list

The Battle Royale
In a Battle Royale, people are removed from the game one at a time until
only one person is left. They are the winner

● We can create a list of players
● We can make sure it's in a nice alphabetical order
● We can remove a single player from the list
● Now we need to remove players one at a time
● When there's only one left, they are the winner!

Game code
Once our list is created, we can loop through the game

● We print out the player list (we might want to modify that function!)
● Our user will tell us who was knocked out

 // A game loop that runs until only one player is left
 while (printPlayers(head) > 1) {
 printf("Who just got knocked out?\n");
 char koName[MAX_NAME_LENGTH];
 fgets(koName, MAX_NAME_LENGTH, stdin);
 koName[strlen(koName) - 1] = '\0';
 head = removePlayer(koName, head);
 printf("----------\n");
 }
 printf("The winner is: %s\n", head->name);

Cleaning Up
Remember, All memory allocated (malloc) needs to be freed

● We can run dcc --leak-check to see whether there's leaking memory
● What do we find?
● There are pieces of memory we've allocated that we're not freeing!

Let's write a function that frees a whole linked list

● Loop through the list, freeing the nodes
● Just be careful not to free one that we still need the pointer from!

Looping to free nodes
A program's memory (not to scale)

First Node

Next

3

Third Node

Next

1
NULLhead

Second
Node

Next

2

Loop pointer

Looping to free nodes
A program's memory (not to scale)

Third Node

Next

1
NULLhead

Second
Node

Next

2

Pointer to node
we're freeing

Loop pointer
Loop pointer is copied from
First Node's next before we
free First Node

First Node

Next

3
Save a pointer
to the node
we're freeing

Looping to free nodes
A program's memory (not to scale)

Third Node

Next

1
NULLhead

Second
Node

Next

2

Pointer to node
we're freeing

Loop pointer

First Node

Next

3
We can free the
node now that
we've copied its
Next

Code to free a linked list
// Loop through a list and free all the allocated memory
void freeList(struct node *n) {
 while(n != NULL) {
 // keep track of the current node
 struct node *remNode = head;

 // move the looping pointer to the next node
 n = n->next;

 // free the current node
 free(remNode);
 }
}

Battle Royale, the Linked Lists demo
What have we written in this program?

● Creation of nodes
● Looping through a list
● Insertion of nodes into specific locations
● Finding locations using loops
● Removal of nodes
● Managing memory

What did we cover today?
Linked Lists

● Finding a particular node for insertion
● Removal
● Removing a specific node
● Memory cleaning

