Eixercise sheet 3 — Solutions
COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2017

Exercise 1. Suppose there exists a O*(1.2") time algorithm, which, given a graph G on n vertices, computes the
size of a largest independent set of G.
Design an algorithm, which, given a graph G, finds a largest independent set of G in time O*(1.2").

Solution sketch.
e Compute k, the size of a largest independent set of G
e Find a vertex v belonging to an independent set of size k

— We can do this by going through each vertex u of G, and checking whether G — N [u] has an independent
set of size k — 1

e Recurse on (G — Ngv],k —1)

Exercise 2. Let A be a branching algorithm, such that, on any input of size at most n its search tree has height
at most n and for the number of leaves L(n), we have

L(n)=3-L(n—2)

Upper bound the running time of A, assuming it spends only polynomial time at each node of the search tree.

Solution. We need to minimize L(n) = 2% subject to 1 > 3.2 (=2,
This solves to 2* = 3/2 = \/3. The running time of A is O*(3"/2).

Exercise 3. Same question, except that
2-L(n—3)
L(n—2)+L(n—4)

2-L(n—2)
Lin—-1)

L(n) < max

Solution. By the Balance property, (3,3) < (2,4). By the Dominance property, (2,4) < (2,2). For every positive
alpha, 1 > 27 is satisfied.

Thus, it suffices to minimize L(n) = 2% subject to 1 > 2-2%(=2)

This solves to 2% = 2!/2 = \/2. The running time of A is O*(2"/?).

Exercise 4. Consider the Max 2-CSP problem

Max 2-CSP
Input: A graph G = (V, E) and a set S of score functions containing

e a score function s : {0,1}? — Ny for each edge e € E,
e a score function s, : {0,1} — Ny for each vertex v € V, and

e a score “function” sy : {0,1}° — Ny (which takes no arguments and is just a constant conve-
nient for bookkeeping).

Output: The maximum score s(¢) of an assignment ¢ : V' — {0,1}:

s(0) =50+ > su(d(0) + D sun(d(u), $(v)).

veV uwveE

1. Design simplification rules for vertices of degree < 2.
2. Using the simple analysis, design and analyze an O*(2™/*) time algorithm, where m = |E|.

3. Use the measure p := we - m + (Z wdc(v)) to improve the analysis to O*(2™/5).

veV
Solution sketch. (a) Simplification rules
SO If there is a vertex y with d(y) = 0, then set sy = sy + maxceqo,13 5y(C) and delete y from G.

S1 If there is a vertex y with d(y) = 1, then denote N(y) = {«} and replace the instance with (G’,S’) where
G' = (V',E') =G —y and 5’ is the restriction of S to V' and E’ except that for all C € {0,1} we set

$(C) = 52(C) + max {5,,(C.D) +5,(D)}.

S2 If there is a vertex y with d(y) = 2, then denote N(y) = {z, z} and replace the instance with (G’, S") where
G =V ,E)=(V -y, (E\{zy,yz}) U{xz}) and S’ is the restriction of S to V' and E’, except that for
C,D € {0,1} we set

/ —
Sa:z(ch) - S:CZ(Cv D) + FIen{aO),(l}{SQcy(C, F) + SyZ(F7D) + Sy(F)}

if there was already an edge zz, discarding the first term s,.(C, D) if there was not.

(b) Branching rules

B Let y be a vertex of maximum degree. There is one subinstance (G’,s¢) for each color C' € {0,1}, where
G'= (V',E") = G — y and s¢ is the restriction of s to V’ and E’, except that we set

(s9)o = s0 + 5, (C),
and, for every neighbor z of y and every D € {0,1},

(59)2(D) = 52(D) + $0y(D, O).

Simple analysis
e Branching on a vertex of degree > 4 removes > 4 edges from both subinstances
e Branching on a vertex of degree 3 removes > 6 edges from both subinstances since G is 3-regular.

The recurrence T'(m) < 2 - T(m — 4) solves to 2™/*

(¢) Measure based analysis Using the measure

M= We - M+ (Z wdc(v))

veV

we constrain that

wg <0 for all d > 0 to ensure that y < wem
d-we/2+wy >0 for all d > 0 to ensure that u(G) >0
—wp <0 constraint for SO

—wo —we <0 constraint for S2

l—wg—d-we—d-(w;j —w;j—1) <0

for all d,j > 3.
Using w, = 0.2, wg = 0, wy = —0.05, we = —0.2, wg = —0.05, and wg = 0 for d > 4, all constraints are satisfied
and p4(G) < m/5 for each graph G.

