
Exercise sheet 3 – Solutions

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. Suppose there exists a O∗(1.2n) time algorithm, which, given a graph G on n vertices, computes the
size of a largest independent set of G.

Design an algorithm, which, given a graph G, finds a largest independent set of G in time O∗(1.2n).

Solution sketch.

• Compute k, the size of a largest independent set of G

• Find a vertex v belonging to an independent set of size k

– We can do this by going through each vertex u of G, and checking whether G−NG[u] has an independent
set of size k − 1

• Recurse on (G−NG[v], k − 1)

Exercise 2. Let A be a branching algorithm, such that, on any input of size at most n its search tree has height
at most n and for the number of leaves L(n), we have

L(n) = 3 · L(n− 2)

Upper bound the running time of A, assuming it spends only polynomial time at each node of the search tree.

Solution. We need to minimize L(n) = 2α subject to 1 ≥ 3 · 2α·(−2).
This solves to 2α = 31/2 =

√
3. The running time of A is O∗(3n/2).

Exercise 3. Same question, except that

L(n) ≤ max

2 · L(n− 3)

L(n− 2) + L(n− 4)

2 · L(n− 2)

L(n− 1)

Solution. By the Balance property, (3, 3) ≤ (2, 4). By the Dominance property, (2, 4) ≤ (2, 2). For every positive
alpha, 1 ≥ 2−α is satisfied.

Thus, it suffices to minimize L(n) = 2α subject to 1 ≥ 2 · 2α·(−2)
This solves to 2α = 21/2 =

√
2. The running time of A is O∗(2n/2).

Exercise 4. Consider the Max 2-CSP problem

1

Max 2-CSP
Input: A graph G = (V,E) and a set S of score functions containing

• a score function se : {0, 1}2 → N0 for each edge e ∈ E,

• a score function sv : {0, 1} → N0 for each vertex v ∈ V , and

• a score “function” s∅ : {0, 1}0 → N0 (which takes no arguments and is just a constant conve-
nient for bookkeeping).

Output: The maximum score s(φ) of an assignment φ : V → {0, 1}:

s(φ) := s∅ +
∑
v∈V

sv(φ(v)) +
∑
uv∈E

suv(φ(u), φ(v)).

1. Design simplification rules for vertices of degree ≤ 2.

2. Using the simple analysis, design and analyze an O∗(2m/4) time algorithm, where m = |E|.

3. Use the measure µ := we ·m+
(∑

v∈V wdG(v)

)
to improve the analysis to O∗(2m/5).

Solution sketch. (a) Simplification rules

S0 If there is a vertex y with d(y) = 0, then set s∅ = s∅ + maxC∈{0,1} sy(C) and delete y from G.

S1 If there is a vertex y with d(y) = 1, then denote N(y) = {x} and replace the instance with (G′, S′) where
G′ = (V ′, E′) = G− y and S′ is the restriction of S to V ′ and E′ except that for all C ∈ {0, 1} we set

s′x(C) = sx(C) + max
D∈{0,1}

{sxy(C,D) + sy(D)}.

S2 If there is a vertex y with d(y) = 2, then denote N(y) = {x, z} and replace the instance with (G′, S′) where
G′ = (V ′, E′) = (V − y, (E \ {xy, yz}) ∪ {xz}) and S′ is the restriction of S to V ′ and E′, except that for
C,D ∈ {0, 1} we set

s′xz(C,D) = sxz(C,D) + max
F∈{0,1}

{sxy(C,F) + syz(F,D) + sy(F)}

if there was already an edge xz, discarding the first term sxz(C,D) if there was not.

(b) Branching rules

B Let y be a vertex of maximum degree. There is one subinstance (G′, sC) for each color C ∈ {0, 1}, where
G′ = (V ′, E′) = G− y and sC is the restriction of s to V ′ and E′, except that we set

(sC)∅ = s∅ + sy(C),

and, for every neighbor x of y and every D ∈ {0, 1},

(sC)x(D) = sx(D) + sxy(D,C).

Simple analysis

• Branching on a vertex of degree ≥ 4 removes ≥ 4 edges from both subinstances

• Branching on a vertex of degree 3 removes ≥ 6 edges from both subinstances since G is 3-regular.

The recurrence T (m) ≤ 2 · T (m− 4) solves to 2m/4

(c) Measure based analysis Using the measure

µ := we ·m+

(∑
v∈V

wdG(v)

)

2

we constrain that

wd ≤ 0 for all d ≥ 0 to ensure that µ ≤ wem
d · we/2 + wd ≥ 0 for all d ≥ 0 to ensure that µ(G) ≥ 0

−w0 ≤ 0 constraint for S0

−w2 − we ≤ 0 constraint for S2

1− wd − d · we − d · (wj − wj−1) ≤ 0

for all d, j ≥ 3.
Using we = 0.2, w0 = 0, w1 = −0.05, w2 = −0.2, w3 = −0.05, and wd = 0 for d ≥ 4, all constraints are satisfied

and µ(G) ≤ m/5 for each graph G.

3

