Exercise sheet 3 - Solutions
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. Suppose there exists a $O^{*}\left(1.2^{n}\right)$ time algorithm, which, given a graph G on n vertices, computes the size of a largest independent set of G.

Design an algorithm, which, given a graph G, finds a largest independent set of G in time $O^{*}\left(1.2^{n}\right)$.

Solution sketch.

- Compute k, the size of a largest independent set of G
- Find a vertex v belonging to an independent set of size k
- We can do this by going through each vertex u of G, and checking whether $G-N_{G}[u]$ has an independent set of size $k-1$
- Recurse on $\left(G-N_{G}[v], k-1\right)$

Exercise 2. Let A be a branching algorithm, such that, on any input of size at most n its search tree has height at most n and for the number of leaves $L(n)$, we have

$$
L(n)=3 \cdot L(n-2)
$$

Upper bound the running time of A, assuming it spends only polynomial time at each node of the search tree.
Solution. We need to minimize $L(n)=2^{\alpha}$ subject to $1 \geq 3 \cdot 2^{\alpha \cdot(-2)}$.
This solves to $2^{\alpha}=3^{1 / 2}=\sqrt{3}$. The running time of A is $O^{*}\left(3^{n / 2}\right)$.
Exercise 3. Same question, except that

$$
L(n) \leq \max \left\{\begin{array}{l}
2 \cdot L(n-3) \\
L(n-2)+L(n-4) \\
2 \cdot L(n-2) \\
L(n-1)
\end{array}\right.
$$

Solution. By the Balance property, $(3,3) \leq(2,4)$. By the Dominance property, $(2,4) \leq(2,2)$. For every positive alpha, $1 \geq 2^{-\alpha}$ is satisfied.

Thus, it suffices to minimize $L(n)=2^{\alpha}$ subject to $1 \geq 2 \cdot 2^{\alpha \cdot(-2)}$
This solves to $2^{\alpha}=2^{1 / 2}=\sqrt{2}$. The running time of A is $O^{*}\left(2^{n / 2}\right)$.
Exercise 4. Consider the Max 2-CSP problem

MAx 2-CSP

Input: A graph $G=(V, E)$ and a set S of score functions containing

- a score function $s_{e}:\{0,1\}^{2} \rightarrow \mathbb{N}_{0}$ for each edge $e \in E$,
- a score function $s_{v}:\{0,1\} \rightarrow \mathbb{N}_{0}$ for each vertex $v \in V$, and
- a score "function" $s_{\emptyset}:\{0,1\}^{0} \rightarrow \mathbb{N}_{0}$ (which takes no arguments and is just a constant convenient for bookkeeping).

Output: The maximum score $s(\phi)$ of an assignment $\phi: V \rightarrow\{0,1\}$:

$$
s(\phi):=s_{\emptyset}+\sum_{v \in V} s_{v}(\phi(v))+\sum_{u v \in E} s_{u v}(\phi(u), \phi(v)) .
$$

1. Design simplification rules for vertices of degree ≤ 2.
2. Using the simple analysis, design and analyze an $O^{*}\left(2^{m / 4}\right)$ time algorithm, where $m=|E|$.
3. Use the measure $\mu:=w_{e} \cdot m+\left(\sum_{v \in V} w_{d_{G}(v)}\right)$ to improve the analysis to $O^{*}\left(2^{m / 5}\right)$.

Solution sketch. (a) Simplification rules
S0 If there is a vertex y with $d(y)=0$, then set $s_{\emptyset}=s_{\emptyset}+\max _{C \in\{0,1\}} s_{y}(C)$ and delete y from G.
S1 If there is a vertex y with $d(y)=1$, then denote $N(y)=\{x\}$ and replace the instance with $\left(G^{\prime}, S^{\prime}\right)$ where $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)=G-y$ and S^{\prime} is the restriction of S to V^{\prime} and E^{\prime} except that for all $C \in\{0,1\}$ we set

$$
s_{x}^{\prime}(C)=s_{x}(C)+\max _{D \in\{0,1\}}\left\{s_{x y}(C, D)+s_{y}(D)\right\} .
$$

S2 If there is a vertex y with $d(y)=2$, then denote $N(y)=\{x, z\}$ and replace the instance with $\left(G^{\prime}, S^{\prime}\right)$ where $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)=(V-y,(E \backslash\{x y, y z\}) \cup\{x z\})$ and S^{\prime} is the restriction of S to V^{\prime} and E^{\prime}, except that for $C, D \in\{0,1\}$ we set

$$
s_{x z}^{\prime}(C, D)=s_{x z}(C, D)+\max _{F \in\{0,1\}}\left\{s_{x y}(C, F)+s_{y z}(F, D)+s_{y}(F)\right\}
$$

if there was already an edge $x z$, discarding the first term $s_{x z}(C, D)$ if there was not.
(b) Branching rules

B Let y be a vertex of maximum degree. There is one subinstance $\left(G^{\prime}, s^{C}\right)$ for each color $C \in\{0,1\}$, where $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)=G-y$ and s^{C} is the restriction of s to V^{\prime} and E^{\prime}, except that we set

$$
\left(s^{C}\right)_{\emptyset}=s_{\emptyset}+s_{y}(C),
$$

and, for every neighbor x of y and every $D \in\{0,1\}$,

$$
\left(s^{C}\right)_{x}(D)=s_{x}(D)+s_{x y}(D, C)
$$

Simple analysis

- Branching on a vertex of degree ≥ 4 removes ≥ 4 edges from both subinstances
- Branching on a vertex of degree 3 removes ≥ 6 edges from both subinstances since G is 3 -regular.

The recurrence $T(m) \leq 2 \cdot T(m-4)$ solves to $2^{m / 4}$
(c) Measure based analysis Using the measure

$$
\mu:=w_{e} \cdot m+\left(\sum_{v \in V} w_{d_{G}(v)}\right)
$$

we constrain that

$$
\begin{aligned}
& w_{d} \leq 0 \text { for all } d \geq 0 \text { to ensure that } \mu \leq w_{e} m \\
& d \cdot w_{e} / 2+w_{d} \geq 0 \text { for all } d \geq 0 \text { to ensure that } \mu(G) \geq 0 \\
&-w_{0} \leq 0 \\
&-w_{2}-w_{e} \leq 0 \text { constraint for S0 } \\
& \text { constraint for S2 }
\end{aligned} \quad \begin{aligned}
& 1-w_{d}-d \cdot w_{e}-d \cdot\left(w_{j}-w_{j-1}\right) \leq 0
\end{aligned}
$$

for all $d, j \geq 3$.
Using $w_{e}=0.2, w_{0}=0, w_{1}=-0.05, w_{2}=-0.2, w_{3}=-0.05$, and $w_{d}=0$ for $d \geq 4$, all constraints are satisfied and $\mu(G) \leq m / 5$ for each graph G.

