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Iterative Compression

For a minimization problem:

Compression step: Given a solution of size k + 1, compress it to a solution
of size k or prove that there is no solution of size k

Iteration step: Incrementally build a solution to the given instance by
deriving solutions for larger and larger subinstances

Seen a lot of success in Parameterized Complexity

Examples: best known fixed parameter algorithms for (Directed)
Feedback Vertex Set, Edge Bipartization, Almost 2-SAT, . . .
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Example: Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of its vertices S ⊆ V such that
every edge of G has at least one endpoint in S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size k?

We will design a (slow) iterative compression algorithm for Vertex Cover to
illustrate the technique.
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Vertex Cover: Compression Step

Comp-VC
Input: graph G = (V,E), integer k, vertex cover C of size k + 1 of G
Output: a vertex cover C∗ of size ≤ k of G if one exists

C

C ′

C ′

V \ C

Go over all partitions (C ′, C ′) of C

C∗ = C ′ ∪N(C ′)

If C ′ is an independent set and |C∗| ≤ k then return C∗
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Vertex Cover: Iteration Step

Use algorithm for Comp-VC to solve Vertex Cover.

Order vertices: V = {v1, v2, . . . , vn}
Define Gi = G[{v1, v2, . . . , vi}]
C0 = ∅
For i = 1..n, find a vertex cover Ci of size ≤ k of Gi using the algorithm for
Comp-VC with input Gi and Ci−1 ∪ {vi}. If Gi has no vertex cover of size
≤ k, then G has no vertex cover of size ≤ k.

Final running time: O∗(2k)
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Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊆ V such
that G− S is acyclic.

Feedback Vertex Set (FVS)

Input: Multigraph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size at most k?

Note: We already saw an O∗((3k)k) time algorithm for FVS.
We will now aim for a O∗(ck) time algorithm, with c ∈ O(1).
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Compression Problem

Comp-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of

G
Output: a feedback vertex set S∗ of size ≤ k of G if one exists
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Iteration step

Order vertices: V = {v1, v2, . . . , vn}
Define Gi = G[{v1, v2, . . . , vi}]
S0 = ∅
For i = 1..n, find a feedback vertex set Si of size ≤ k of Gi using the
algorithm for Comp-FVS with input Gi and Si−1 ∪ {vi}. If Gi has no
feedback vertex set of size ≤ k, then G has no feedback vertex set of size
≤ k.

Suppose Comp-FVS can be solved in O∗(ck) time.
Then, using this iteration, FVS can be solved in O∗(ck) time.
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Compression step

To solve Comp-FVS, go through all partitions (S′, S′) of S. For each of them,
we will want to find a feedback vertex set S∗ of G with |S∗| < |S| and
S′ ⊆ S∗ ⊆ V \ S′ if one exists.

Equivalently, find a feedback vertex set S′′ of G− S′ with |S′′| < |S′| and
S′′ ∩ S′ = ∅.
We arrive at the following problem:

Disjoint-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of

G
Output: a feedback vertex set S∗ of G with |S∗| ≤ k and S∗ ∩ S = ∅, if one

exists

If Disjoint-FVS can be solved in O∗(dk) time, then Comp-FVS can be solved
in

O∗

(
k+1∑
i=0

(
k + 1

i

)
di

)
⊆ O∗((d+ 1)k) time.
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Algorithm for Disjoint-FVS

Disjoint-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of

G
Output: a feedback vertex set S∗ of G with |S∗| ≤ k and S∗ ∩ S = ∅, if one

exists

Denote A := V \ S.

S A
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Simplification rules for Disjoint-FVS

S A

Start with S∗ = ∅.

(cycle-in-S)

If G[S] is not acyclic, then return No.

(budget-exceeded)

If k < 0, then return No.
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Simplification rules for Disjoint-FVS

S A

(finished)

If G− S∗ is acyclic, then return S∗.

S. Gaspers (UNSW) Iterative Compression Semester 2, 2015 14 / 29



Simplification rules for Disjoint-FVS

S A

(creates-cycle)

If ∃v ∈ A such that G[S ∪ {v}] is not acyclic, then add v to S∗ and remove v
from G.
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Simplification rules for Disjoint-FVS

S A

(Degree-(≤ 1))

If ∃v ∈ V with dG(v) ≤ 1, then remove v from G.
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Simplification rules for Disjoint-FVS

S A

(Degree-2)

If ∃v ∈ V with dG(v) = 2 and at least one neighbor of v is in A, then add an
edge between the neighbors of v (even if there was already an edge) and remove v
from G.
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Branching rule for Disjoint-FVS

Select a vertex v ∈ A with at least 2 neighbors in S.
Such a vertex exists if no simplification rule applies (for example, we can take a
leaf in G[A]).
Branch into two subproblems:

v ∈ S∗: add v to S∗, remove v from G, and decrease k by 1

v /∈ S∗: add v to S
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Exercise: Running time

Prove that this algorithm has running time O∗(4k).

Hint: Use the measure k + cc(S), where cc(S) is the number of connected
components of G[S].
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Result for Feedback Vertex Set

Theorem 1

Feedback Vertex Set can be solved in O∗(5k) time.
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Min r-Hitting Set

A set system S is a pair (V,H), where V is a finite set of elements and H is a set
of subsets of V . The rank of S is the maximum size of a set in H, i.e.,
maxY ∈H |Y |.
A hitting set of a set system S = (V,H) is a subset X of V such that X contains
at least one element of each set in H, i.e., X ∩ Y 6= ∅ for each Y ∈ H.

(universe)-Min-r-Hitting Set (r-HS)

Input: A rank r set system S = (V,H)
Parameter: n = |V |
Output: A smallest hitting set of S

Note: The corresponsing decision problem is trivially FPT.
S. Gaspers (UNSW) Iterative Compression Semester 2, 2015 19 / 29



Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X

X ′

X ′

Go over all partitions (X ′, X ′) of X such that |X ′| ≥ 2|X| − n− 1.
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X

X ′

X ′

Compute a hitting set X ′′ of size ≤ k − |X ′| for (V ′, H ′), where V ′ = V \X and
H ′ = {Y ∩ V : Y ∈ H ∧ Y ∩X ′ = ∅}, if one exists.
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X

X ′

X ′

If one exists, then return X∗ = X ′ ∪X ′′.
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Compression Step II

The algorithm considers only partitions into (X ′, X ′) such that
|X ′| ≥ 2|X| − n− 1.
Number of partitions:

O

(
max

{
22n/3, max

2n/3≤j≤n

(
j

2j − n

)})
= O

(
max

2n/3≤j≤n

(
j

2j − n

))

The subinstances (V ′, H ′) where V ′ = V \X and
H ′ = {Y ∩ V : Y ∈ H ∧ Y ∩X ′ = ∅} are instances of (r − 1)-HS

Suppose (r − 1)-HS can be solved in O∗((αr−1)
n) time. Then, r-HS can be

solved in

O∗
(

max
2n/3≤j≤n

(
j

2j − n

)
(αr−1)

n−j
)

time (1)

For example, using a O(1.6278n) algorithm for 3-HS [Wahlström ’07], we
obtain a O(1.8704n) time algorithm for 4-HS 1.

1the maximum in (1) is obtained for j ≈ 0.6824 · n
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Iteration Step

(V,H) instance of r-HS with V = {v1, v2, . . . , vn}
Vi = {v1, v2, . . . , vi} for i = 1 to n

Hi = {Y ∈ H : Y ⊆ Vi}

Note that |Xi−1| ≤ |Xi| ≤ |Xi−1|+ 1 where Xj is a minimum hitting set of
the instance (Vi, Hi)
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4-HS

Theorem 2 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

4-HS can be solved in O(1.8704n) time.

One can generalize this result to the counting version of r-HS for any fixed r:
count the number of minimum hitting sets of the given set system.
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#r-Hitting Set

Theorem 3 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

If there exists a O∗((αk−1)
n) time algorithm for #(r − 1)-HS with αr−1 ≤ 2,

then #r-HS can be solved in time

O∗
(

max
2n/3≤j≤n

{(
j

2j − n

)
(αr−1)

n−j
})

.

If αr−1 ≥ 1.6553, then the following result is better

Theorem 4 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

If there exists a O∗((αr−1)
n) time algorithm for #(r − 1)-HS with αk−1 ≤ 2,

then #r-HS can be solved in time

min
0.5≤β≤1

max

{
O∗
((

n

βn

))
, O∗

(
2βn(αr−1)

n−βn)} .
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Results for r-HS and #r-HS

r #r-HS r-HS

2 O(1.2377n) [Wahlström ’08] O(1.2002n) [Xiao, Nagamoshi ’13]

3 O(1.7198n) [Theorem 3] O(1.6278n) [Wahlström ’07]

4 O(1.8997n) [Theorem 4] O(1.8704n) [Theorem 3]

5 O(1.9594n) [Theorem 4] O(1.9489n) [Theorem 4]

6 O(1.9824n) [Theorem 4] O(1.9781n) [Theorem 4]

7 O(1.9920n) [Theorem 4] O(1.9902n) [Theorem 4]

S. Gaspers (UNSW) Iterative Compression Semester 2, 2015 25 / 29



Exercise

A cluster graph is a graph where every connected component is a complete graph.

Cluster Vertex Deletion
Input: Graph G = (V,E), integer k
Parameter: k
Question: Is there a set of vertices S ⊆ V with |S| ≤ k such that G− S is

a cluster graph?

Recall that G is a cluster graph iff G contains no induced P3.

Design an O∗(2k) time algorithm for Cluster Vertex Deletion.

Hints: (1) Show that the disjoint version of the problem can be solved in
polynomial time: given (G = (V,E), S, k) such that |S| = k + 1 and G− S is a
cluster graph, find a S∗ ⊆ V \S with |S∗| ≤ k such that G−S∗ is a cluster graph.
(2) Simplification rule for v ∈ V \ S inducing a P3 with 2 vertices in S. Reduce to
maximum weight matching.
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Solution sketch

Disjoint-CVD
Input: graph G = (V,E), integer k, cluster vertex deletion set S of size

k + 1 of G
Output: a cluster vertex deletion set S∗ of G with |S∗| ≤ k and S∗ ∩ S = ∅,

if one exists

Simplification rules:

If G[S] contains an induced P3, then return No.

If ∃v ∈ V \ S such that G[S ∪ {v}] contains an induced P3, then set
G← G− v and k ← k − 1.

Now each vertex in V \ S has either no neighbor in S or is adjacent to all the
vertices of exactly one cluster of G[S].
Reduce the problem to maximum weighted matching in an auxiliary graph where
one independent set corresponds to the clusters in G[S] and each vertex in the
other independent set corresponds to cliques neighboring exactly one cluster in
G[S]. It remains to define the edges of the auxiliary graph and their weights.
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Further Reading

Chapter 4, Iterative Compression in
Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Section 11.3, Iterative Compression in
Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

Section 6.1, Iterative Compression: The Basic Technique in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

Section 6.2, Edge Bipartization in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.
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