2a. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Contents

1 Vertex Cover 1
 1.1 Simplification rules 2
 1.2 Preprocessing algorithm 3

2 Kernelization algorithms 3

3 Kernel for Hamiltonian Cycle 4

4 Kernel for Edge Clique Cover 4

5 Kernels and Fixed-parameter tractability 6

6 Further Reading 6

1 Vertex Cover

A vertex cover of a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that for each edge $\{u, v\} \in E$, we have $u \in S$ or $v \in S$.

Vertex Cover

<table>
<thead>
<tr>
<th>Input:</th>
<th>A graph $G = (V, E)$ and an integer k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter:</td>
<td>k</td>
</tr>
<tr>
<td>Question:</td>
<td>Does G have a vertex cover of size at most k?</td>
</tr>
</tbody>
</table>

Exercise 1

![Graph](image)
Is this a Yes-instance for Vertex Cover? (Is there $S \subseteq V$ with $|S| \leq 4$, such that $\forall uv \in E, u \in S$ or $v \in S$?)

Exercise 2

1.1 Simplification rules

(Degree-0)
If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for every instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both Yes-instances or they are both No-instances.

Lemma 1. (Degree-0) is sound.

Proof. First, suppose $(G - v, k)$ is a Yes-instance. Let S be a vertex cover for $G - v$ of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a Yes-instance.

Now, suppose $(G - v, k)$ is a No-instance. For the sake of contradiction, assume (G, k) is a Yes-instance. Let S be a vertex cover for G of size at most k. But then, $S \setminus \{v\}$ is a vertex cover of size at most k for $G - v$; a contradiction.

(Degree-1)
If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 2. (Degree-1) is sound.

Proof. Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$.

If S is a vertex cover of G of size at most k, then $S \setminus \{u, v\}$ is a vertex cover of $G - N_G[v]$ of size at most $k - 1$, because $u \in S$ or $v \in S$. If S' is a vertex cover of $G - N_G[v]$ of size at most $k - 1$, then $S' \cup \{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G - N_G[v]$ are incident to v.

(Large Degree)
If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 3. (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \leq k$.

(Number of Edges)
If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No
Lemma 4. \((\text{Number of Edges})\) is sound.

Proof. Assume \(d_G(v) \leq k\) for each \(v \in V\) and \(|E| > k^2\). Suppose \(S \subseteq V\), \(|S| \leq k\), is a vertex cover of \(G\). We have that \(S\) covers at most \(k^2\) edges. However, \(|E| \geq k^2 + 1\). Thus, \(S\) is not a vertex cover of \(G\). \(\square\)

1.2 Preprocessing algorithm

\textbf{VC-preprocess}

\textbf{Input:} A graph \(G\) and an integer \(k\).

\textbf{Output:} A graph \(G'\) and an integer \(k'\) such that \(G\) has a vertex cover of size at most \(k\) if and only if \(G'\) has a vertex cover of size at most \(k'\).

\[G' \leftarrow G \]
\[k' \leftarrow k \]
\[\text{repeat} \]
\[\quad \text{Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for } (G', k') \]
\[\text{until no simplification rule applies} \]
\[\text{return } (G', k') \]

Effectiveness of preprocessing algorithms

- How effective is \textit{VC-preprocess}?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

- Say that a preprocessing algorithm for a problem \(\Pi\) is \textit{nice} if it runs in polynomial time and for each instance for \(\Pi\), it returns an instance for \(\Pi\) that is strictly smaller.
- \(\rightarrow\) executing it a linear number of times reduces the instance to a single bit
- \(\rightarrow\) such an algorithm would solve \(\Pi\) in polynomial time
- For NP-hard problems this is not possible unless \(P = NP\)
- We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?

Effectiveness of \textit{VC-preprocess}

Lemma 5. For any instance \((G, k)\) for \textsc{Vertex Cover}, \textit{VC-preprocess} produces an equivalent instance \((G', k')\) of size \(O(k^2)\).

Proof. Since all simplification rules are sound, \((G = (V, E), k)\) and \((G' = (V', E'), k')\) are equivalent. By (Number of Edges), \(|E'| \leq (k')^2 \leq k^2\). By (Degree-0) and (Degree-1), each vertex in \(V'\) has degree at least 2 in \(G'\). Since \(\sum_{v \in V'} d_{G'}(v) = 2|E'| \leq 2k^2\), this implies that \(|V'| \leq k^2\). Thus, \(|V'| + |E'| \leq O(k^2)\). \(\square\)

2 Kernelization algorithms

Kernelization: definition

Definition 6. A \textit{kernelization} for a parameterized problem \(\Pi\) is a \textbf{polynomial time} algorithm, which, for any instance \(I\) of \(\Pi\) with parameter \(k\), produces an \textit{equivalent} instance \(I'\) of \(\Pi\) with parameter \(k'\) such that \(|I'| \leq f(k)\) and \(k' \leq f(k)\) for a computable function \(f\). We refer to the function \(f\) as the \textit{size} of the kernel.

Note: We do not formally require that \(k' \leq k\), but this will be the case for many kernelizations.
VC-preprocess is a quadratic kernelization

Theorem 7. VC-preprocess is a $O(k^2)$ kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?
We defer this question for now.

3 Kernel for Hamiltonian Cycle

A Hamiltonian cycle of G is a subgraph of G that is a cycle on $|V(G)|$ vertices.

<table>
<thead>
<tr>
<th>VC-HAMILTONIAN CYCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph $G = (V, E)$.</td>
</tr>
<tr>
<td>Parameter: $k = \text{vc}(G)$, the size of a smallest vertex cover of G.</td>
</tr>
<tr>
<td>Question: Does G have a Hamiltonian cycle?</td>
</tr>
</tbody>
</table>

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

Issue: We do not actually know a vertex cover of size k. We do not even know the value of k (it is not part of the input).

- Obtain a vertex cover using an approximation algorithm. We will use a 2-approximation algorithm, producing a vertex cover of size $\leq 2k$ in polynomial time.
- If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| - 2k$.
- No two consecutive vertices in the Hamiltonian Cycle can be in I.
- A kernel with $\leq 4k$ vertices can now be obtained with the following simplification rule.

(Too-large)
Compute a vertex cover C of size $\leq 2k$ in polynomial time. If $2|C| < |V|$, then return No

4 Kernel for Edge Clique Cover

Definition 8. An edge clique cover of a graph $G = (V, E)$ is a set of cliques in G covering all its edges. In other words, if $C \subseteq 2^V$ is an edge clique cover then each $S \in C$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in C$ such that $u, v \in S$.

Example: $\{\{a, b, c\}, \{b, c, d, e\}\}$ is an edge clique cover for this graph.

<table>
<thead>
<tr>
<th>EDGE CLIQUE COVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph $G = (V, E)$ and an integer k</td>
</tr>
<tr>
<td>Parameter: k</td>
</tr>
<tr>
<td>Question: Does G have an edge clique cover of size at most k?</td>
</tr>
</tbody>
</table>

The size of an edge clique cover C is the number of cliques contained in C and is denoted $|C|$.
Helpful properties

Definition 9. A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subseteq S'$.

Lemma 10. A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of size at most k such that each $S \in C'$ is a maximal clique.

Proof sketch. (⇒): Replace each clique $S \in C$ by a maximal clique S' with $S \subseteq S'$.

(⇐): Trivial, since C' is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 11. *(Isolated) is sound.*

Proof sketch. Since no edge is incident to v, a smallest edge clique cover for $G - v$ is a smallest edge clique cover for G, and vice-versa.

(Isolated-Edge)

If $\exists uv \in E$ such that $d_G(u) = d_G(v) = 1$, then set $G \leftarrow G - \{u, v\}$ and $k \leftarrow k - 1$.

(Twins)

If $\exists u, v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 12. *(Twins) is sound.*

Proof. We need to show that G has an edge clique cover of size at most k if and only if $G - v$ has an edge clique cover of size at most k.

(⇒): If C is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in C\}$ is an edge clique cover of $G - v$ of size at most k.

(⇐): Let C' be an edge clique cover of $G - v$ of size at most k. Partition C' into $C'_u = \{S \in C' : u \in S\}$ and $C'_{-u} = C' \setminus C'_u$. Note that each set in $C'_u = \{S \cup \{v\} : S \in C'_u\}$ is a clique in G since $N_G[u] = N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $C'_u \cup C'_{-u}$ is an edge clique cover of G of size at most k.

(Size-V)

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 13. *(Size-V) is sound.*

Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V| > 2^k$, and G has an edge clique cover C of size at most k. Since 2^C (the set of all subsets of C) has size at most 2^k, and every vertex belongs to at least one clique in C by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in C : u \in S\} = \{S \in C : v \in S\}$. But then, $N_G[u] = \bigcup_{S \in C : u \in S} S = \bigcup_{S \in C : v \in S} S = N_G[v]$, contradicting that (Twin) is not applicable.

Kernel for Edge Clique Cover

Theorem 14. Edge Clique Cover has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 15. Edge Clique Cover is FPT.
5 Kernels and Fixed-parameter tractability

Theorem 16. Let Π be a decidable parameterized problem. Π has a kernelization algorithm \iff Π is FPT.

Proof. (\Rightarrow): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

(\Leftarrow): Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$. If $f(k) < n$, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial Yes- or No-instance depending on the answer of A. Otherwise, $f(k) \geq n$. In this case, the kernelization algorithm outputs the input instance.

6 Further Reading

- Chapter 2, Kernelization in [Cyg+15]
- Chapter 4, Kernelization in [DF13]
- Chapter 7, Data Reduction and Problem Kernels in [Nie06]
- Chapter 9, Kernelization and Linear Programming Techniques in [FG06]
- the new book on kernelization [Fom+19]

References