SLAM for Dummies

A Tutorial Approach to Simultaneous Localizatiordaviapping

By the ‘dummies’

Sgren Riisgaard and Morten Rufus Blas

1. Table of contents

L. TABLE OF CONTENT S ittt ittt et e mmm ettt et e et e e e e e e e e e e et e e st esse e e s seeeaates 2
A |\ 2 O 1 10 L I [] R 4
T A = 1O L IS I A 1 PP 6
4, THE HARDWARE ...ttt et et e et e ettt e e e e et e e et e e e et e e s abt e e eneanns 7
1= 2 0] =10 1 P PP 7
THE RANGE MEASUREMENT DEVICEiituniittiettteeitaersiaessassesesstsssstsssssssessstaes st sssssssneeesaeesnns 8
5. THE SLAM PROGCESS ..ottt et et e e e e ettt e et e e e e e e e e et s ee s e baeesaneeean 10
LT 7 N Yt =) A N 14
7. ODOMETRY AT A ittt et e e ettt e e ettt e e e bt e e et e e e e s setsenansabteeesanerens 15
8. LANDIMARKS ... oo e e ettt aaas 16
9. LANDMARK EXTRACTION ...ttt e ettt e e e e e e st eena e aaaes 19
SPIKE LANDMARKS ..ttt ieesie it eateeteeses st saseseaes s aaesa et s st eesaes s sasaneesses s s sanersaesannsnseassnesanss 19
LAY Y N 20
MIULTIPLE STRATEGIES ..t ittt it iet ettt ett e et et ettt et et s e eae st et aeeteetaaaeseeteeteeterneaneansrnrtannaneneens 24
10. DATA ASSOCIATION ...ttt ettt et e et e et e e e e e s e e s e eeaeeeanaeees 25
11. I S 28
OVERVIEW OF THE PROCESS .. et ttuttutitneiseetestsssnseteesasesnsanssnsstnseseesaesansstsstereaeesiesasesesiennn 28
THE MATRICES. 1t utttittneettttteetaeea et eat e et tes s sas s e an s sbaseseee s sbases s eetee e sanseteesnes s nanneee b saneennesnnes 29
THE SYSEEM SLALE: X ..veiuiieciiietiee ettt ettt e sttt e e steeaeaes e e ste e s e essaesteaesseneeereaesseenaenseens 29
ThE COVAriaNCE MALITX: P ..vieiiiieee ettt ettt et e et s e s et e e e s st e e s e saebaeseeeraeees 30
The Kalman QaIN: K. ...ttt e sae et es e ste e s esaesteaesaenaeareaesaeeneenseeas 31
The Jacobian of the measurement MOCE!: Hoocuvieiiiiiiee et 31
The Jacobian of the prediction MOCEL: Aoo oot 33
The SLAM specific Jacobians: Jie @NA J; ...vvevvieiiiiieieie sttt saeenaennee s 34
The process NOISE: Q ANU Wi......ocuiiiiiicie ettt sttt e ete et e e s te e et e aeateeesaesnnaennaans 35
The measurement NOISE; RANA Vocouieiiei ittt ettt st bae s e s be e e e eaaae s 35
STEP 1: UPDATE CURRENT STATE USING THE ODOMETRY DATA . .uuuiitieeiueeineesereneeniesinsenereennn 36
STEP2: UPDATE STATE FROM REOBSERVED LANDMARKScutiiiniitteitieseesiesiestsstereneesssaennssnnns 37
STEP 3: ADD NEW LANDMARKS TO THE CURRENT STATE. .. cutituittetiiesersiersesnessereeesssnennssnneenns 39
12. FINAL REMARKS ..o ettt e ettt ettt e e e e e e e e e e e e et aeeaaaeeeas 41

13.

14.

15.

16.

17.

REFERENCES: ... e 42

APPENDIX A: COORDINATE CONVERSIONt 43
APPENDIX B: SICK LMS 200 INTERFACE CODE.........ccccciiiiiiiiiiiiiiieieeeeeeeee 44
APPENDIX C: ERL INTERFACE CODEccoiiiiiiie e 2.5
APPENDIX D: LANDMARK EXTRACTION CODEccooes coiiiiiiiiii e 82

2. Introduction

The goal of this document is to give a tutoriatadiuction to the field of SLAM
(Simultaneous Localization And Mapping) for mobit#ots. There are numerous
papers on the subject but for someone new in #ie iti will require many hours of
research to understand many of the intricacieslvedoin implementing SLAM. The
hope is thus to present the subject in a cleacandise manner while keeping the
prerequisites required to understand the documemintinimum. It should actually

be possible to sit down and implement basic SLAMrdfaving read this paper.

SLAM can be implemented in many ways. First otladire is a huge amount of
different hardware that can be used. Secondly Slis\More like a concept than a
single algorithm. There are many steps involve8LAM and these different steps
can be implemented using a number of differentrélyms. In most cases we explain
a single approach to these different steps butdtiather possible ways to do them

for the purpose of further reading.

The motivation behind writing this paper is printato help ourselves understand
SLAM better. One will always get a better knowledga subject by teaching it.
Second of all most of the existing SLAM papers\agy theoretic and primarily
focus on innovations in small areas of SLAM, whidltourse is their purpose. The
purpose of this paper is to be very practical aui$ on a simple, basic SLAM
algorithm that can be used as a starting poinetdaggknow SLAM better. For people
with some background knowledge in SLAM we here @nes complete solution for
SLAM using EKF (Extended Kalman Filter). By comigleve do not mean perfect.
What we mean is that we cover all the basic stegsired to get an implementation
up and running. It must also be noted that SLAMwsh has not been completely

solved and there is still considerable researchgyon in the field.

To make it easy to get started all code is providedt is basically just a matter of
downloading it, compiling it, plugging in the hardwe (SICK laser scanner, ER1
robot) and executing the application; Plug-and-Pleg have used Microsoft Visual

C# and the code will compile in the .Net Framewark.1. Most of the code is very
straightforward and can be read almost as pseude;-so porting to other languages

or platforms should be easy.

3. About SLAM

The term SLAM is as stated an acronym for Simubarselocalization And
Mapping. It was originally developed by Hugh Dutréhyte and John J. Leonard
[7] based on earlier work by Smith, Self and Cheese[6]. Durrant-Whyte and
Leonard originally termed it SMAL but it was latellanged to give a better impact.
SLAM is concerned with the problem of building apra an unknown environment

by a mobile robot while at the same time navigatirgenvironment using the map.

SLAM consists of multiple parts; Landmark extrantidata association, state
estimation, state update and landmark update. Trermmany ways to solve each of
the smaller parts. We will be showing examplessfach part. This also means that
some of the parts can be replaced by a new wagin@idhis. As an example we will
solve the landmark extraction problem in two diéierways and comment on the
methods. The idea is that you can use our impletien and extend it by using your
own novel approach to these algorithms. We haeeldd to focus on a mobile robot
in an indoor environment. You may choose to chaogee of these algorithms so

that it can be for example used in a different emment.

SLAM is applicable for both 2D and 3D motion. Wdlwnly be considering 2D

motion.

It is helpful if the reader is already familiar Withe general concepts of SLAM on an
introductory level, e.g. through a university legelurse on the subject. There are lots
of great introductions to this field of researcblining [6][4]. Also it is helpful to

know a little about the Extended Kalman Filter (BK$ources of introduction are
[3][5]. Background information is always helpfid & will allow you to more easily

understand this tutorial but it is not strictly véegd to comprehend all of it.

4. The Hardware

The hardware of the robot is quite important. T&Sd@\M there is the need for a
mobile robot and a range measurement device. Tielerrobots we consider are
wheeled indoor robots. This documents focus isimain software implementation
of SLAM and does not explore robots with compliclteotion models (models of
how the robot moves) such as humanoid robots, antons underwater vehicles,
autonomous planes, robots with weird wheel conéigans etc.

We here present some basic measurement devicesardynused for SLAM on

mobile robots.

The robot

Important parameters to consider are ease of deeetry performance and price.
The odometry performance measures how well thet rcdoo estimate its own
position, just from the rotation of the wheels. Tabot should not have an error of
more than 2 cm per meter moved and 2° per 45° deduened. Typical robot drivers
allow the robot to report its (X,y) position in ser@artesian coordinate system and

also to report the robots current bearing/heading.

There is the choice to build the robot from scraidhis can be very time consuming,
but also a learning experience. It is also possleuy robots ready to use, like Real
World Interface or the Evolution Robotics ER1 rofidi]. The RWL1 is not sold
anymore, though, but it is usually available in pnaomputer science labs around the
world. The RW1 robot has notoriously bad odometigugh. This adds to the
problem of estimating the current position and nseBReAM considerably harder.

ER1 is the one we are using. It is small and véeap. It can be bought for only
200USD for academic use and 300USD for private i®emes with a camera and a
robot control system. We have provided very basigeds in the appendix and on the

website.

The range measurement device

The range measurement device used is usually madeaener nowadays. They are
very precise, efficient and the output does notliregmuch computation to process.
On the downside they are also very expensive. AKAS€nner costs about
5000USD. Problems with laser scanners are lookingriain surfaces including
glass, where they can give very bad readings (@afzut). Also laser scanners cannot
be used underwater since the water disrupts thedigd the range is drastically
reduced.

Second there is the option of sonar. Sonar wasintsusively some years ago. They
are very cheap compared to laser scanners. Thasur&ments are not very good
compared to laser scanners and they often givedzatings. Where laser scanners
have a single straight line of measurement emittaa the scanner with a width of as
little as 0.25 degrees a sonar can easily have aarto 30 degrees in width.
Underwater, though, they are the best choice as&hrble the way dolphins navigate.
The type used is often a Polaroid sonar. It wagimally developed to measure the
distance when taking pictures in Polaroid came®asar has been successfully used
in [7].

The third option is to use vision. Traditionallyhi#s been very computationally
intensive to use vision and also error prone duwhémges in light. Given a room
without light a vision system will most certainlptwork. In the recent years, though,
there have been some interesting advances witlsifighd. Often the systems use a
stereo or triclops system to measure the distagsiag vision resembles the way
humans look at the world and thus may be moretiaély appealing than laser or
sonar. Also there is a lot more information in etypie compared to laser and sonar
scans. This used to be the bottleneck, sinceialbitta needed to be processed, but
with advances in algorithms and computation poWweris becoming less of a

problem. Vision based range measurement has beeassiully used in [8].

We have chosen to use a laser range finder frorK 8C It is very widely used, it is
not dangerous to the eye and has nice properties®in SLAM. The measurement

error is +- 50mm, which seems like very much, bytractice the error was much

smaller. The newest laser scanners from SICK hasasorement errors down to +- 5

mm.

5. The SLAM Process

The SLAM process consists of a number of steps.gblaé of the process is to use the
environment to update the position of the robatc&ithe odometry of the robot
(which gives the robots position) is often erroreeae cannot rely directly on the
odometry. We can use laser scans of the environtaerrect the position of the
robot. This is accomplished by extracting featdres the environment and re-
observing when the robot moves around. An EKFéBoked Kalman Filter) is the
heart of the SLAM process. It is responsible fodating where the robot thinks it is
based on these features. These features are cdyncatlad landmarks and will be
explained along with the EKF in the next couplelodpters. The EKF keeps track of
an estimate of the uncertainty in the robots pmsiéind also the uncertainty in these
landmarks it has seen in the environment.

An outline of the SLAM process is given below.

Laser Scan

|
—l Landmark

Odometry change Extractior
EKF Data

Odometry updar Associatiol
EKF

A

Re-observatio

v

EKF

New observatior

]

Figure 1 Overview of the SLAM process

A

10

When the odometry changes because the robot moeesitertainty pertaining to the
robots new position is updated in the EKF using ey update. Landmarks are
then extracted from the environment from the rolpets position. The robot then
attempts to associate these landmarks to obsemgatidandmarks it previously has
seen. Re-observed landmarks are then used toeuthgatobots position in the EKF.
Landmarks which have not previously been seendaedito the EKF as new
observations so they can be re-observed laterthédle steps will be explained in the
next chapters in a very practical fashion relatoveow our ER1 robot was
implemented. It should be noted that at any paitihese steps the EKF will have an

estimate of the robots current position.

The diagrams below will try to explain this procassnore detail:

pke

VR*

Figure 2 The robot is represented by the triangle.The stars represent landmarks. The robot
initially measures using its sensors the locatiorf the landmarks (sensor measurements
illustrated with lightning).

11

Figure 3 The robot moves so it now thinks it is lre. The distance moved is given by the robots
odometry.

Figure 4 The robot once again measures the locatiai the landmarks using its sensors but finds
out they don’t match with where the robot thinks they should be (given the robots location).
Thus the robot is not where it thinks it is.

12

Figure 5 As the robot believes more its sensors thats odometry it now uses the information
gained about where the landmarks actually are to dermine where it is (the location the robot
originally thought it was at is illustrated by the dashed triangle).

Figure 6 In actual fact the robot is here. The sesors are not perfect so the robot will not
precisely know where it is. However this estimatis better than relying on odometry alone. The
dotted triangle represents where it thinks it is; he dashed triangle where odometry told it it was;

and the last triangle where it actually is.

13

6. Laser Data

The first step in the SLAM process is to obtairedabout the surroundings of the
robot. As we have chosen to use a laser scanngewaser data. The SICK laser
scanner we are using can output range measurefremtgn angle of 100° or 180°.
It has a vertical resolution of 0.25°, 0.5° or 1 .@f®aning that the width of the area
the laser beams measure is 0.25°, 0.5° or 1.0°. vdgpical laser scanner output
will look like this:

2.98, 2.99, 3.00, 3.01, 3.00, 3.49, 3.50, ...028217, 2.21

The output from the laser scanner tells the rafrges right to left in terms of meters.
If the laser scanner for some reason cannot ekxact length for a specific angle it
will return a high value, we are using 8.1 as tiveghold to tell if the value is an
error. Some laser scanners can be configuredvaages longer than 8.1 meters.
Lastly it should be noted that laser scanners ang fast. Using a serial port they can
be queried at around 11 Hz.

The code to interface with the laser scanner caseba in Appendix B: SICK LMS

200 interface code.

14

7. Odometry Data

An important aspect of SLAM is the odometry dathe Hoal of the odometry data is
to provide an approximate position of the robotessured by the movement of the
wheels of the robot, to serve as the initial gudsshere the robot might be in the
EKF. Obtaining odometry data from an ER1 robotugejeasy using the built-in
telnet server. One can just send a text strinhedeinet server on a specific port and
the server will return the answer.

The difficult part about the odometry data anel ldser data is to get the timing
right. The laser data at some time t will be owgtdat the odometry data is retrieved
later. To make sure they are valid at the same ¢ingecan extrapolate the data. It is
easiest to extrapolate the odometry data sinceah&ols are known. It can be really
hard to predict how the laser scanner measuremalhtse. If one has control of
when the measurements are returned it is easiesktfor both the laser scanner
values and the odometry data at the same timecddhe to interface with the ER1

robot is shown in

15

Appendix C: ER1 interface code.

16

8. Landmarks

Landmarks are features which can easily be re-sbdand distinguished from the
environment. These are used by the robot to firidunere it is (to localize itself).
One way to imagine how this works for the robdbigicture yourself blindfolded. If
you move around blindfolded in a house you mayhead and touch objects or hug
walls so that you don’t get lost. Characteridtings such as that felt by touching a
doorframe may help you in establishing an estimétghere you are. Sonars and

laser scanners are a robots feeling of touch.

Below are examples of good landmarks from diffeesntironments:

Figure 7 The statue of liberty is a good landmark s it is unique and can easily be seen from
various environments or locations such as on landom the sea, and from the air.

17

Figure 8 The wooden pillars at a dock may be goo@dmhdmarks for an underwater vehicle.

As you can see the type of landmarks a robot ugksften depend on the

environment in which the robot is operating.

Landmarks should be re-observable by allowing themexample to be viewed
(detected) from different positions and thus fraffedent angles.

Landmarks should be unique enough so that theyearasily identified from one
time-step to another without mixing them up. lhestwords if you re-observe two
landmarks at a later point in time it should beygasdetermine which of the
landmarks is which of the landmarks we have preshipseen. If two landmarks are

very close to each other this may be hard.

Landmarks you decide a robot should recognize shoat be so few in the
environment that the robot may have to spend egtktiche without enough visible

landmarks as the robot may then get lost.

If you decide on something being a landmark it &théwe stationary. Using a person
as a landmark is as such a bad idea. The reastmd@riterion is fairly
straightforward. If the landmark is not alwayshe same place how can the robot

know given this landmark in which place it is.

The key points about suitable landmarks are aswil|i

» Landmarks should be easily re-observable.

* Individual landmarks should be distinguishable freath other.
» Landmarks should be plentiful in the environment.

* Landmarks should be stationary.

18

[1 [1
E Dimng Room] ;\
T 7 Dok L

|:| Living Foom

C
BILL]]

.'I:.I_,__| Gedroom
'\.ll'

1T
Tt

Eilchon

@]|L_L|[z]

Cnirance

Figure 9 In an indoor environment such as that usetdy our robot there are many straight lines
and well defined corners. These could all be used landmarks.

19

9. Landmark Extraction

Once we have decided on what landmarks a roboidhilize we need to be able to

somehow reliable extract them from the robots ssnsputs.

As mentioned in the introduction there are multykeys to do landmark extraction
and it depends largely on what types of landmarksatempted extracted as well as

what sensors are used.

We will present basic landmark extraction algorighusing a laser scanner. They will
use two landmark extraction algorithm called Spidwed RANSAC.

Spike landmarks

The spike landmark extraction uses extrema thlandmarks. They are identified
by finding values in the range of a laser scan whewn values differ by more than a
certain amount, e.g. 0.5 meters. This will find biiginges in the laser scan from e.g.
when some of the laser scanner beams reflect fraadlaand some of the laser
scanner beams do not hit this wall, but are refétom some things further behind

the wall.

Figure 10: Spike landmarks. The red dots are tabléegs extracted as landmarks.

The spikes can also be found by having three valagsto each other, A, B and C.

Subtracting B from A and B from C and adding the mumbers will yield a value.

20

This method is better for finding spikes as it viilld actual spikes and not just

permanent changes in range.

Spike landmarks rely on the landscape changing lzeloveen two laser beams. This

means that the algorithm will fail in smooth enwinoents.

RANSAC

RANSAC (Random Sampling Consensus) is a methodhwdao be used to extract
lines from a laser scan. These lines can in teraded as landmarks. In indoor
environments straight lines are often observedibgr scans as these are

characteristic of straight walls which usually acenmon.

RANSAC finds these line landmarks by randomly tgkinsample of the laser
readings and then using a least squares approwimatifind the best fit line that runs
through these readings. Once this is done RANSAeClcs how many laser readings
lie close to this best fit line. If the numberaisove some threshold we can safely
assume that we have seen a line (and thus seelhsegment). This threshold is

called the consensus.

The below algorithm outlines the line landmark agtion process for a laser scanner
with a 180° field of view and one range measurementdegree. The algorithm
assumes that the laser data readings are converée@artesian coordinate system —
see Appendix A. Initially all laser readings ass@amed to be unassociated to any
lines. In the algorithm we only sample laser detalings from unassociated

readings.

While

e there are still unassociated laser readings,
e and the number of readings is larger than the conse nsus,

+ and we have done less than N trials.
do

Select a random laser data reading.

21

- Randomly sample S data readings within D degrees of this laser

data reading (for example, choose 5 sample readings that lie
within 10 degrees of the randomly selected laser da ta reading).
- Using these S samples and the original reading calc ulate a

least squares best fit line.

- Determine how many laser data readings lie within X centimeters
of this best fit line.

- If the number of laser data readings on the line is above some
consensus C do the following:

o calculate new least squares best fit line based on all
the laser readings determined to lie on the old bes t fit
line.

0 Add this best fit line to the lines we have extract ed.

o0 Remove the number of readings lying on the line fro m the

total set of unassociated readings.
od

This algorithm can thus be tuned based on theviaig parameters:

N — Max number of times to attempt to find lines.

S — Number of samples to compute initial line.

D — Degrees from initial reading to sample from.

X — Max distance a reading may be from line toagstociated to line.

C — Number of points that must lie on a line fawoibe taken as a line.

The EKF implementation assumes that landmarks dorag a range and bearing
from the robots position. One can easily trangeliee into a fixed point by taking
another fixed point in the world coordinates anidwating the point on the line
closest to this fixed point. Using the robots poriand the position of this fixed

point on the line it is trivial to calculate a r&ngnd bearing from this.

Using simple trigonometry one can easily calcutaig point. Here illustrated using

the origin as a fixed point:

22

Extracted line

Extracted landmarl
point \
landmark Line
/ orthogonal to
(0.0) line landmark

Figure 11 lllustration of how to get an extractedihe landmark as a point.

23

Figure 12 The RANSAC algorithm finds the main linesn a laser scan. The green lines are the
best fit lines representing the landmarks. The redlots represent the landmarks approximated to
points. By changing the RANSAC parameters you codlalso extract the small wall segments.
They are not considered very reliable landmarks swere not used. Lastly just above the robot is
a person. RANSAC is robust against people in thedar scan.

Another possibility is to expand the EKF implemeiatia so it could handle lines

instead of just points. This however is complidate is not dealt with in this tutorial.

24

Multiple strategies

We have presented two different approaches to larkiextraction. Both extract
different types of landmarks and are suitablefidoor environments. Spikes
however is fairly simple and is not robust agaerstironments with people. The
reason for this is that Spikes picks up peoplepd®s as they theoretically are good
landmarks (they stand out from the environment).

As RANSAC uses line extraction it will not pick people as landmarks as they do
not individually have the characteristic shape bhe.

A third method which we will not explore is callsdan-matching where you attempt
match two successive laser scans. We name itffdvepeople interested in other

approaches.

Code for landmark extraction algorithms can be ébumAppendix D: Landmark

extraction code.

25

10. Data Association

The problem of data association is that of matcbingerved landmarks from
different (laser) scans with each other. We hase eferred to this as re-observing

landmarks.

To illustrate what is meant by this we will give example:

For us humans we may consider a chair a landmark. Let ussay wearein aroomand
see a specific chair. Now we |leave the room and then at some later point
subsequently return to the room. If we then see a chair in the roomand say that it is
the same chair we previoudy saw then we have associated this chair to the old chair.
This may seem simple but data association ishard to do well. Say the room had two
chairsthat looked practically identical. When we subsequently return to the roomwe
might not be able to distinguish accurately which of the chairs were which of the
chairswe originally saw (as they all look the same). Our best bet isto say that the
one to the left must be the one we previously saw to the left, and the one to the right

must be the one we previously saw on the right.

In practice the following problems can arise inedassociation:

- You might not re-observe landmarks every time step.
- You might observe something as being a landmarkailub ever see it again.
- You might wrongly associate a landmark to a presipsgeen landmark.

As stated in the landmarks chapter it should bg ease-observe landmarks. As such
the first two cases above are not acceptable femmdmark. In other words they are
bad landmarks. Even if you have a very good lan#lregtraction algorithm you may

run into these so it is best to define a suitalalia-@dssociation policy to minimize this.

The last problem where you wrongly associate arfearé can be devastating as it

means the robot will think it is somewhere diffearéfom where it actually is.

26

We will now define a data-association policy thaald with these issues. We assume
that a database is set up to store landmarks we gr@viously seen. The database is
usually initially empty. The first rule we set iggthat we don’t actually consider a
landmark worthwhile to be used in SLAM unless weehgeen it N times. This
eliminates the cases where we extract a bad lakdnTdre below-mentioned

validation gate is explained further down in thet.te

1. When you get a new laser scan use landmark extracti onto
extract all visible landmarks.

2. Associate each extracted landmark to the closest la ndmark we
have seen more than N times in the database.

3. Pass each of these pairs of associations (extracted landmark,
landmark in database) through a validation gate.

a. If the pair passes the validation gate it must be t he
same landmark we have re-observed so increment the number
of times we have seen it in the database.

b. If the pair fails the validation gate add this land mark
as a new landmark in the database and set the numbe r of
times we have seen it to 1.

This technique is called the nearest-neighbor agr@as you associate a landmark
with the nearest landmark in the database.

The simplest way to calculate the nearest landnsaid calculate the Euclidean
distance. Other methods include calculating the Mahalandisisance which is
better but more complicated. This was not useslimnapproach as RANSAC

landmarks usually are far apart which makes udiageuclidean distance suitable.

The validation gate uses the fact that our EKF @am@ntation gives a bound on the
uncertainty of an observation of a landmark. Tlescan determine if an observed
landmark is a landmark in the database by chedkihg landmark lies within the
area of uncertainty. This area can actually bevdrgraphically and is known as an
error ellipse.

By setting a constantan observed landmark is associated to a landrhtrk i

following formula holds:

27

|I "..;r. 5 N l |I A 3 /llll. .

Wherey; is the innovation and; & the innovation covariance defined in the EKF

chapter

28

11. The EKF

The Extended Kalman Filter is used to estimatesthge (position) of the robot from
odometry data and landmark observations. The EKiSuslly described in terms of
state estimation alone (the robot is given a perfep). That is, it does not have the
map update which is needed when using EKF for SLAMELAM vs. a state
estimation EKF especially the matrices are charagebcan be hard to figure out how
to implement, since it is almost never mentionegivdrere. We will go through each
of these. Most of the EKF is standard, as a noER&, once the matrices are set up,

it is basically just a set of equations.

Overview of the process

As soon as the landmark extraction and the datcms®n is in place the SLAM

process can be considered as three steps:

1. Update the current state estimate using the odgrdata
2. Update the estimated state from re-observing lankkna

3. Add new landmarks to the current state.

The first step is very easy. It is just an additgithe controls of the robot to the old
state estimate. E.g. the robot is at point (x, ¥hwotation theta and the controls are
(dx, dy) and change in rotation is dtheta. Theltedithe first step is the new state of
the robot (x+dx, y+dy) with rotation theta+dtheta.

In the second step the re-observed landmarks a®daved. Using the estimate of the
current position it is possible to estimate whéeelandmark should be. There is
usually some difference, this is called the innmratSo the innovation is basically
the difference between the estimated robot posémhthe actual robot position,
based on what the robot is able to see. In thenskesiep the uncertainty of each

observed landmark is also updated to reflect redeaniges. An example could be if

29

the uncertainty of the current landmark positiomeasy little. Re-observing a
landmark from this position with low uncertaintylMncrease the landmark certainty,

i.e. the variance of the landmark with respecti®durrent position of the robot.

In the third step new landmarks are added to tite,sthe robot map of the world.
This is done using information about the currerdifimn and adding information

about the relation between the new landmark andlth&andmarks.

The matrices

It should be noted that there is a lot of differeotions for the same variables in the

different papers. We use some fairly common notions

The system state: X

Xr
X is probably one of the most important matricethi; system along with the thyrt

ela
covariance matrix. It contains the position of thkot, X, y and theta. X1

Furthermore it contains the x and y position ofrelandmark. The matrix can Y1

be seen to the right. It is important to have tlarim as a vertical matrix to

make sure that all the equations will work. The ozt X is 1 column wide Xn
Yn

and 3+2*n rows high, where n is the number of laade. Usually the values
saved will be in either meters or millimeters foe ranges. Which one is used does
not matter, it is just important, of course, to tis® same notion everywhere. The

bearing is saved in either degrees or radians.nAigé a question of using the same

notion everywhere.

30

The covariance matrix: P

Quick math recap:
The covariance of two variates provides a meastunew strongly correlated these
two variables are. Correlation is a concept usaddasure the degree of linear

dependence between variables.

The covariance matrix P is a very central matrishie system. It contains the

covariance on the robot position, the covariancéherlandmarks, the covariance

between robot position and landmarks gnd A E

finally it contains the covariance between

the landmarks. The figure on the right

D B [.| G
shows the content of the covariance
matrix P. The first cell, A contains the
covariance on the robot position. Itisa §— T ."F C
by 3 matrix (x, y and theta). B is the

covariance on the first landmark. It is a 2 by 2nwasince the landmark does not
have an orientation, theta. This continues dow@,terhich is the covariance for the
last landmark. The cell D contains the covarianesvben the robot state and the first
landmark. The cell E contains the covariance batviie first landmark and the robot
state. E can be deduced from D by transposingubersatrix D. F contains the
covariance between the last landmark and theldinstmark, while G contains the
covariance between the first landmark and theldastmark, which again can be
deduced by transposing F. So even though the @naimatrix may seem
complicated it is actually built up very systemalig. Initially as the robot has not
seen any landmarks the covariance matrix P onlydas the matrix A. The
covariance matrix must be initialized using somiauale values for the diagonal. This
reflects uncertainty in the initial position. Deplémy on the actual implementation
there will often be a singular error if the initiacertainty is not included in some of
the calculations, so it is a good idea to inclugi®e initial error even though there is

reason to believe that the initial robot positisrexact.

31

The Kalman gain: K

The Kalman gain K is computed to find out how muehwill trust the observed
landmarks and as such how much we want to gain thenrmew knowledge they
provide. If we can see that the robot should beeddO cm to the right, according to

the landmarks we use the Kalman Gain to find ouwt hmuch we actually correct the

position, this may only be 5 cm because we domet the landmarks T x
r b

completely, but rather find a compromise betweenatiometry and the | v, | v,

landmark correction. This is done using the unaastaf the observed LU
Xi,r | X1,b
landmarks along with a measure of the quality efrdmge measurement vir | Yoo

device and the odometry performance of the rolbditel range

measurement device is really bad compared to thenetty performance | - me
n,r n,
of the robot, we of course do not trust it very imuso the Kalman gain | Ynr | Ynb

will be low. On the contrary, if the range measueahdevice is very good compared
to the odometry performance of the robot the Kalmaim will be high. The matrix
can be seen to the right. The first row shows hawhrshould be gained from the
innovation for the first row of the state X. Thesticolumn in the first row describes
how much should be gained from the innovation ims&eof range, the second column
in the first row describes how much should be ghiinem the innovation in terms of
the bearing. Again both are for the first row ie state, which is the x value of the
robot position. The matrix continues like down thgb the robot position; the first
three rows, and the landmarks; each two new rows.size of the matrix is 2

columns and 3+2*n rows, where n is the number dmaarks.

The Jacobian of the measurement model: H

The Jacobian of the measurement model is closkierkto the measurement model,
of course, so let's go through the measurement frimste The measurement model
defines how to compute an expected range and lgeafithe measurements
(observed landmark positions). It is done usingfetiewing formula, which is

denoted h:

32

J@g—§f+ﬁj—yf—n

= | A, — V|
| .
tan | =
LA, —x)

oy

range

bearing -G+,

Where lambda x is the x position of the landmatris the current estimated robot x
position, lambda y is the y position of the landknand y is the current estimated
robot y position. Theta is the robot rotation. Tiwi# give us the predicted
measurement of the range and bearing to the lakdiiae Jacobian of this matrix

with respect to x, y and theta, H, is:

H shows us how much the range and bearing chasgesyaand theta changes. The
first element in the first row is the change inganvith respect to the change in the x
axis. The second element is with respect to thagdan the y axis. The last element
is with respect to the change in theta, the robiattion. Of course this value is zero as
the range does not change as the robot rotatesetiomd row gives the same
information, except that this is the change in Imegior the landmark. This is the
contents of the usual H for regular EKF state estiiom. \When doing SLAM we need

some additional values for the landmarks:

Xe | Yo | Te | Xe | Yo Xo | Yo | X3 | Y3
B C 0 0 -A| -B 0 0
D E F 0 0 -D| -E 0 0

When using the matrix H e.g. for landmark numbey twe will be using the matrix

above. The upper row is for information purposes;anis not part of the matrix.

33

This means that the first 3 columns are the reddlas for regular EKF state
estimation. For each landmark we add two columnsemusing the H matrix for
landmark two as above we fill it out like abovelwX2 set to —A and —D and Y2 set
to —B and -E. The columns for the rest of the laadm are 0. are the same as the first
two columns of the original H, just negated. Weyarde two terms, Xand Ya,

because the landmarks do not have any rotation.

The Jacobian of the prediction model: A

Like H, the Jacobian of the prediction model issely related to the prediction
model, of course, so let’s go through the predictiwodel first. The prediction model
defines how to compute an expected position ofabet given the old position and

the control input. It is done using the followirgriula, which is denoted f:

X+ AfcosO +gAtcost)
v+ Afsin@ + gAfsin ()
0+AO0+gAd

—h
[

Where x and y is the robot position, theta the tobtation,At is the change in thrust
and q is the error term. We are using the changesition directly from the
odometry input from the ER1 system, so we use theta and\x, Ay andAtheta

directly and the process noise, described later:

X+ AX+ AX*(Q

y+tAy+Ay*q
theta +Atheta +Atheta * q

Anyway we assume the linearized version when calmg the jacobian A yielding:

1 0 —Afsind
0 1 Afcost/
0 0 |

34

The calculations are the same as for the H maxixgpt that we now have one more
row for the robot rotation. Since it is only used fobot position prediction it will

also not be extended for the rest of the landma&gsan be seen from the first
matrix, the prediction model, the termt* sin theta is the same a8y-in our case

and -At * cos theta is the same A%. So we can just use our control terms, yielding:

1 0 | Ay
0 1 | AXx
0 0 1

The SLAM specific Jacobians: Jy, and J,

When doing SLAM there are some Jacobians whicloaleused in SLAM. This is
of course in the integration of new features, wiicthe only step that differs from
regular state estimation using EKF. The first is Ixs basically the same as the
jacobian of the prediction model, except that veetsiut without the rotation term. It
is the jacobian of the prediction of the landmavidsich does not include prediction

of theta, with respect to the robot state [x, gtahfrom X:

1 0 —Afsint/
0 1 Afcosft/

The jacobian Jis also the jacobian of the prediction model feg landmarks, but this

time with respect to [range, bearing]. This in tyields:

cosf/ + A)) -At*sin() + AU)
o= sin(+ A0)) Atrcos(? + AU)

35

The process noise: Q and W

The process is assumed to have a gaussian.noserfiwoal to the control\x, Ay

andAt. The noise is denoted Q, which is a 3 by 3 maltrix 7

CAX
is usually calculated by multiplying some gaussiample CAY?

C with W and W transposed: AR

W =[Arcos0® Arsing A0
Q = WCW

C is be a representation of how exact the odontijhe value should be set
according to the robot odometry performance andiglly easiest to set by
experiments and tuning the value.

In most papers the process noise is either dei@@dne or as WQW The notion C

is basically never used, but is needed here to shewvo approaches.

The measurement noise: R and V

The range measurement device is also assumedeoghagsian noise proportional to

the range and bearing. It is calculated as VRWis just a 2 by 2 identity matrix. R is

also a 2 by 2 matrix with numbers only in the diagloIn the upper left rc

corner we have the range, r, multiplied by somestamis c and d. The bd

constants should represent the accuracy of theureragnt device. If for example the
range error has 1 cm variance it should, ¢ shoeld gaussian with variance 0.01. If
the bearing error is always 1 degree bd shoulepkaced with the number 1,
presuming that degrees are used for measuremestallyit will not make sense to

make the error on the angle proportional with tilae ef the angle.

36

Step 1: Update current state using the odometry data

This step, called the prediction step we updatetingent state using the odometry
data. That is we use the controls given to thetraboalculate an estimate of the new

position of the robot. To update the current stegaise the following equation:
X+ Atcost)+gAtcost)
v+ Afsin@ + gAfsin 0
0+ A0 +gAl

In our simple odometry model we can simply just #ulcontrols as noted in a

previous chapter:

X + AX

y+Ay
theta +Atheta

This should be updated in the first three spacéisarstate vector, X. We also need to

update the A matrix, the jacobian of the predictioodel, every iteration:

1 0 | Ay
0 1 | AXx
0 0 1

Also Q should be updated to reflect the contrahte\x, Ay andAt:
CAX® | cAXAy | cAXAt
CCAYAX | CAY* | cAyAt
CAtAX | CAtAy | cAt?

Finally we can calculate the new covariance forrdi®t position. Since the
covariance for the robot position is just the tefp 8 by 3 matrix of P we will only
update this:

PP=AP"A+Q

Where the symbol'Pis the top left 3 by 3 matrix of P.

37

Now we have updated the robot position estimatetlamaovariance for this position
estimate. We also need to update the robot torieatoss correlations. This is the top

3 rows of the covariance matrix:
PP=AP

Step 2: Update state from re-observed landmarks

The estimate we obtained for the robot positiomiscompletely exact due to the
odometry errors from the robot. We want to compen&a these errors. This is done
using landmarks. The landmarks have already bessused including how to
observe them and how to associate them to alreaalyrklandmarks. Using the
associated landmarks we can now calculate theatisplent of the robot compared to
what we think the robot position is. Using the taggement we can update the robot
position. This is what we want to do in step 2.sT$tep is run for each re-observed
landmark. Landmarks that are new are not dealt witil step 3. Delaying the
incorporation of new landmarks until the next stalb decrease the computation cost
needed for this step, since the covariance matrigand the system state, X, are

smaller.

We will try to predict where the landmark is usihg current estimated robot position

(x, y) and the saved landmark positidg ¢y). With the following formula:

J{/i _"'-]; . [)1 _.I'Ly TV
I — I)(-t I _ 1__ i
bearing tan™'| =—= [— @+,
LA —x)

X

range

We get the range and bearing to the landmarksh,sden when calculating the
jacobian H. This can be compared to the range aadriy for the landmark we get
from the data association, which we will denotBut first we need some more

computations. From the previous chapters we hav@tobian H:

38

Again, remember that only the first three columnd the columns valid for the

current landmark should be filled out.

The error matrix R should also be updated to reftee range and bearing in the

current measurements. A good starting value f@s tise range value rc

multiplied with 0.01, meaning there is 1 % errothe range. A good error bd

for the bd value is 1, meaning there is 1 degresr @ the measurements. This error
should not be proportional with the size of thelanthis would not make sense, of

course.

Now we can compute the Kalman gain. It is calcdatsing the following formula:

K=P*H *(H*P*H +V*R*VT)*

The Kalman now contains a set of numbers indicdtmg much each of the
landmark positions and the robot position shouldipegated according to the re-
observed landmark. The term (H* P *H V * R * V') is called the innovation
covariance, S, it is also used in the Data Assiociathapter when calculating the

validation gate for the landmark.

Finally we can compute a new state vector using<dédenan gain:

39

X =X+K*(z-h)

This operation will update the robot position alawmith all the landmark positions,
given the term (z-h) does not result in (0, 0).é\ibiat (z-h) yields a result of two

numbers which is the displacement in range andriggadenoted.

This process is repeated for each matched landmark.

Step 3: Add new landmarks to the current state

In this step we want to update the state vectonKthe covariance matrix P with new
landmarks. The purpose is to have more landmasiscn be matched, so the robot

has more landmarks that can be matched.

First we add the new landmark to the state vector X
X = [X XN yN]T

Also we need to add a new row and column to tham@arce matrix, shown in the

figure below as the grey area. First we add theugamce for the new landmark in the

cell C, also called B*N*! since it is the
A E

covariance for the N+1 landmark:
PN = 3, P 3" + IRY

D B |- -] G

After this we add the robot — landmark

covariance for the new landmark. This [T T F C

corresponds to the upper left corner of {

covariance matrix. It is computed as follows:
Fj’N+1 - p’r \]x T
- r

The landmark — robot covariance is the transpoade\of the robot — landmark

covariance, corresponding to the lower right cooféhe covariance matrix:
Fj\l+l|’ - (P’N+1)T

40

Finally the landmark — landmark covariance needsetadded (the lowest row):

Fj\l+li — \l(r (Fj’l)T

Again the landmark — landmark covariance on therogide of the diagonal matrix is

the transposed value:
PiN+l — (lj\l+li)T

This completes the last step of the SLAM procebs. ibbot is now ready to move
again, observe landmarks, associate landmarksteiguasystem state using
odometry, update the system state using re-obséawmeddharks and finally add new

landmarks.

41

12. Final remarks

The SLAM presented here is a very basic SLAM. Therauch room for
improvement, and there are areas that have notlmeamtouched. For example there
is the problem of closing the loop. This problercasicerned with the robot returning
to a place it has seen before. The robot shoulabreze this and use the new found
information to update the position. Furthermorerthet should update the
landmarks found before the robot returned to a knplace, propagating the

correction back along the path. A system such dsA®I[2] is concerned with this.

It is also possible to combine this SLAM with arcopation grid, mapping the world
in a human-readable format. Besides the obviousassEn occupation grid as a
human-readable map, occupation grids can alsodxefos path planning. A* and D*

algorithms can be built upon this. [1]

42

13.

10.

References:

Koenig, Likhachevincremental A* (D*)

Bosse, Newman, Leonard, Soika, Feiten, TeAerATLAS framework
Roy: Foundations of state estimation (lecture):

Zunino: SLAM in realistic environments:

http://www.nada.kth.se/utbildning/forsk.utb/avhandar/lic/020220. pdf
Welch, BishopAn introduction to the Kalman Filter:

Smith, Self, Cheesmagstimating uncertain spatial relationshipsin robotics
Leonard, Durrant-Whytevlobile robot | ocalization by tracking geometric beacons:

Se, Lowe, Little: Mobile Robot Localization and Mepg using Scale-Invariant Visual
Landmarks:

http://www.cs.ubc.ca/~se/papers/ijrr02. pdf

SICK, industrial sensors:
http://www.sick.de
Evolution Robotics

http://www.evolution.com

43

14. Appendix A: Coordinate conversion

Conversion from range and bearing to Cartesiandioates:

X = range* Cos(8,)

y =range* -Sn(é,)

Converts an observation from the robots sensoGattesian coordinates. Whefg

is the angle the observation is viewed at and rangee distance to the measurement.
To get the coordinates with respect to a world yeapmust also add the robots angle

6. relative to the world map:

X =range* Cos(g, +6.)

y =range* -Sin(g, +6.)

44

15. Appendix B: SICK LMS 200 interface code

LMS Interface code:

using System;
using SerialPorts;

namespace APULMS

/Il <summary>

/Il Summary description for LMS200.

/Il </[summary>

public class LMS200

{
private Threader th;
public SerialPort Port;
private WithEvents Func;
private int Portindex;
private static byte [| GET_MEASUREMENTS = {0x02, 0x00, 0x02, 0x00, 0x30
private static byte [PCLMS_B9600 = {0x02,0x00,0x02,0x00,0x20,0x42,0x
private static byte [PCLMS_B19200 ={0x02,0x00,0x02,0x00,0x20,0x41,0x
private static byte [PCLMS_B38400 = {0x02,0x00,0x02,0x00,0x20,0x40,0x

public LMS200(Threader t, int Portindex)

this .th=t;
this .Portindex = PortIndex;

/I Instantiate base class event handlers.
this .Func= new WithEvents();

this .Func.Error = new StrnFunc(this .OnError);
this .Func.RxChar = new ByteFunc(this .OnRecvl);
this .Func.CtsSig = new BoolFunc(this .OnCts);
this .Func.DsrSig = new BoolFunc(this .OnDsr);

this .Func.RlsdSig new BoolFunc(this .OnRlsd);

, 0x01, 0x31, 0x18};
52,0x08};
51,0x08};
50,0x08};

45

this .Func.RingSig = new BoolFunc(this .OnRing);

/Il Instantiate the terminal port.

this .Port = new SerialPort(this .Func);

this .Port.Cnfg.BaudRate = SerialPorts.LineSpeed.Baud_96
this .Port.Cnfg.Parity = SerialPorts.Parity.None;

PortControl();
/Il <summary>
/Il Gives one round of measurements
Il </summary>

public void getMeasurements()

SendBuf(GET_MEASUREMENTS);

}
public void setBaud(bool fast)
if (fast)
{
SendBuf(PCLMS_B38400);
Port.Cnfg.BaudRate = SerialPorts.LineSpeed.Baud
}
else
SendBuf(PCLMS_B19200);
Port.Cnfg.BaudRate = SerialPorts.LineSpeed.Baud
}

public void ClosePorts()

PortControl();

}
private void PortControl()

00;

38400;

19200;

46

if (this .Port.IsOpen == false)
{
if (this .Port.Open(Portindex) ==
/I ERROR
return ;
}
else
{
/I OK
}
}
else
{
if (this .Port.IsOpen)
{
this .Port.Close();
}
1 OK
this .Port.Signals();
}
return ;

/Il <summary>
/Il Handles error events.
/Il </[summary>
internal void OnError(string fault)
{
/lthis.Status.Text = fault;
PortControl();

I <summary>
/Il Immediate byte received.

false)

a7

/Il </summary>

internal void OnRecvl(byte [] b)
{
}

/Il <summary>

/Il Set the modem state displays.
/Il </summary>

internal void OnCts(bool cts)

System.Threading.Thread.Sleep(1);

/Il <summary>
/Il Set the modem state displays.
/Il </summary>
internal void OnDsr(bool dsr)
{
System.Threading.Thread.Sleep(1);
Color.Red:;

/Il <summary>

/Il Set the modem state displays.

/Il </summary>

internal void OnRIsd(bool rlsd)

{
}

/Il <summary>

/Il Set the modem state displays.

/Il </summary>

internal void OnRing(bool ring)

{

System.Threading.Thread.Sleep(1);

System.Threading.Thread.Sleep(1);

48

{

/Il <summary>
/Il Transmit a buffer.
Il </summary>

private

}

uint SendBuf(byte [] b)

uint nSent=0;
if (b.Length >0)

nSent = this .Port.Send(b);
if (nSent != b.Length)

/I ERROR
}

return nSent;

49

Thread for retrieving the data:

using System;
using SerialPorts;
using System.Threading;

namespace APULMS

/Il <summary>
/Il Summary description for Threader.
/Il </[summary>
public class Threader
{
public byte [] buffer;
public int bufferSize;
public int bufferWritePointer;
public int bufferReadPointer;
public SerialPort p;
public bool cont= true ;

public Threader(int BufferSize)

{
this .bufferSize = BufferSize;
buffer = new byte [this .bufferSize];
ResetBuffer();
}
public Threader()
{
this .bufferSize = 20000;
buffer = new byte [this .bufferSize];
ResetBuffer();
}
public void ResetBuffer()
{

50

}
{

bufferWritePointer = 0;
bufferReadPointer = 0;

private

public

for (int i=0;i< this .bufferSize; i++)
buffer[i] = 0x00;

int pwrap(int p)

while (p >= bufferSize)
p -= bufferSize;
return (p);

void getData()

byte [] b;
uint nBytes;
int count=0;

while (true)

I/l Get number of bytes
nBytes = this .p.Recv(out b);
if (nBytes > 0)

int i=0;
for (;i<nBytes && i< b.Length; i++)
buffer[pwrap(bufferWritePointer+i)] = bli];
bufferwWritePointer = pwrap(bufferWritePointer
/I restart no data counter

count = 0;
}
else
// no data, count up
count++;
}

+1);

51

{

if (count > 100)

/I Wait until told to resume

Monitor.Wait(this);
/I Reset counter after wait
count = 0;

52

16. Appendix C: ER1 interface code

ERL interface code, ApplicationSettings.cs:

Il --

/I <autogenerated>

/Il This code was generated_u98 ?y a tool.

/I Runtime Version: 1.0.3705.0

I

/I Changes to this file may cause incorrect beh
/I the code is regenerated.

Il </autogenerated>

Il --

namespace ER1{
using System;
using System.Data;
using System.Xml;
using System.Runtime.Serialization;

[Serializable()]
[System.ComponentModel.DesignerCategoryAttribut
[System.Diagnostics.DebuggerStepThrough()]
[System.ComponentModel. ToolboxItem(true)]
public class ApplicationSettings : DataSet_ul23 ?

private ER1DataTable tableERZ;

public ApplicationSettings()_ul23 ?
this .InitClass();
System.ComponentModel.CollectionChangeE
System.ComponentModel.CollectionChangeEventHandler(

avior and will be lost if

e("code")]

ventHandler schemaChangedHandler = new
this .SchemaChanged);

this .Tables.CollectionChanged += schemaChangedHandler;
this .Relations.CollectionChanged += schemaChangedHandle r;

53

protected ApplicationSettings(SerializationInfo info, Stream ingContext context) {
string strSchema = ((string)(info.GetValue("XmISchema", typeof (string))));
if ((strSchema != null)){
DataSet ds = new DataSet();
ds.ReadXmlISchema(new XmlTextReader(new System.lO.StringReader(strSchema)));
if ((ds.Tables['ER1"] != null)){
this .Tables.Add(new ER1DataTable(ds.Tables['ER1"));
}
this .DataSetName = ds.DataSetName;
this .Prefix = ds.Prefix;
this .Namespace = ds.Namespace;
this .Locale = ds.Locale;
this .CaseSensitive = ds.CaseSensitive;
this .EnforceConstraints = ds.EnforceConstraints;
this .Merge(ds, false , System.Data.MissingSchemaAction.Add);
this .InitVars();
}
else {
this .InitClass();
}
this .GetSerializationData(info, context);
System.ComponentModel.CollectionChangeE ventHandler schemaChangedHandler = new
System.ComponentModel.CollectionChangeEventHandler(this .SchemaChanged);
this .Tables.CollectionChanged += schemaChangedHandler;
this .Relations.CollectionChanged += schemaChangedHandle r;

}

[System.ComponentModel.Browsable(false)]
[System.ComponentModel.DesignerSerializationVisibil ityAttribute(System.ComponentModel.DesignerSerializ
y.Content)]

public ER1DataTable ER1 {
get {

return this .tableER1;

ationVisibilit

54

}
public override DataSet Clone() {
ApplicationSettings cln = ((Application Settings)(base .Clone()));
cIn.InitvVars();
return cln;
}
protected override bool ShouldSerializeTables() {
return false ;
}
protected override bool ShouldSerializeRelations() {
return false ;
}
protected override void ReadXmlSerializable(XmIReader reader) {
this .Reset();
DataSet ds = new DataSet();
ds.ReadXmli(reader);
if ((ds.Tables['ER1"] != null)){
this .Tables.Add(new ER1DataTable(ds.Tables['"ER1"));
}
this .DataSetName = ds.DataSetName;
this .Prefix = ds.Prefix;
this .Namespace = ds.Namespace;
this .Locale = ds.Locale;
this .CaseSensitive = ds.CaseSensitive;
this .EnforceConstraints = ds.EnforceConstraints;
this .Merge(ds, false , System.Data.MissingSchemaAction.Add);
this .InitVars();
}

protected override System.Xml.Schema.XmISchema GetSchemaSerializable(
System.lO.MemoryStream stream = new System.|O.MemoryStream();

)

55

this .WriteXmISchema(new XmlITextWriter(stream, null));
stream.Position = 0;

return System.Xml.Schema.XmISchema.Read(new XmlTextReader(stream), null);
}
internal void InitVars() {
this .tableER1 = ((ER1DataTable)(this .Tables['ER1"]));
if ((this .tableER1!= null)){
this .tableERZ1.InitVars();
}
}
private void InitClass() {
this .DataSetName = "ApplicationSettings";
this .Prefix ="";
this .Namespace = "http://tempuri.org/ApplicationSetting s.xsd";
this .Locale = new System.Globalization.Culturelnfo("en-US");
this .CaseSensitive = false ;
this .EnforceConstraints = true ;
this .tableER1 = new ER1DataTable();
this .Tables.Add(this .tableERL1);
}
private bool ShouldSerializeER1() {
return false ;
}
private void SchemaChanged(object sender, System.ComponentModel.CollectionChangeEven
if ((e.Action == System.ComponentModel.CollectionChan geAction.Remove)) {
this .InitVars();
}
}

public delegate void ER1RowChangeEventHandler(object sender, ER1RowChangeEvent e);

[System.Diagnostics.DebuggerStepThrough()]

tArgs e) {

public class ER1DataTable : DataTable, System.Collections.IEnum
private DataColumn columnlP;
private DataColumn columnPassword;
private DataColumn columnPort;
internal ER1DataTable() :

base ("ER1") {
this .InitClass();

}
internal ER1DataTable(DataTable table) :
base (table.TableName) {
if ((table.CaseSensitive != table.DataSet.CaseSensiti
this .CaseSensitive = table.CaseSensitive;
}
if ((table.Locale.ToString() != table.DataSet.Locale.
this .Locale = table.Locale;
}
if ((table.Namespace != table.DataSet.Namespace)) {
this .Namespace = table.Namespace;
}
this .Prefix = table.Prefix;
this .MinimumCapacity = table.MinimumCapacity;
this .DisplayExpression = table.DisplayExpression;
}
[System.ComponentModel.Browsable(false)]
public int Count{
get {
return this .Rows.Count;
}
}

erable {

ve)) {

ToString())) {

57

internal DataColumn IPColumn {

get {
return this .columnlP;

internal DataColumn PasswordColumn {

get {
return this .columnPassword;

internal DataColumn PortColumn {

get {
return this .columnPort;

public ER1Row this [int index]{

get {
return ((ER1Row)(this .Rows[index]));

public event ER1RowChangeEventHandler ER1IRowChanged;
public event ER1RowChangeEventHandler ER1RowChanging;
public event ER1RowChangeEventHandler ER1RowDeleted;
public event ER1RowChangeEventHandler ER1RowDeleting;

public void AddER1Row(ER1Row row) {
this .Rows.Add(row);

58

public ER1Row AddER1Row(string IP,
ER1Row rowER1Row = ((ER1Row)(
rowER1Row.ltemArray =
IP,
Password,
Port};
this .Rows.Add(rowER1Row);
return rowER1Row;

string Password,
this .NewRow()));
new object []{

public
return

System.Collections.|[Enumerator GetEnumerator() {
this .Rows.GetEnumerator();

public override DataTable Clone() {
ER1DataTable cIn = ((ER1DataTable)(
cIn.InitVars();

return cln;
}
protected override DataTable Createlnstance() {
return new ER1DataTable();
}
internal void InitVars() {
this .columnIP = this .Columns["IP"];
this .columnPassword = this .Columns['Password"];
this .columnPort = this .Columns["Port"];
}
private void InitClass() {
this .columnlIP = new DataColumn("IP", typeof (string),
this .Columns.Add(this .columnIP);

this .columnPassword =
System.Data.MappingType.Element);
this .Columns.Add(

new DataColumn("Password",

this .columnPassword);

base .Clone()));

int Port) {

null , System.Data.MappingType.Element);

typeof (string), null ,

this .columnPort = new DataColumn("Port", typeof (int), null , System.Data.MappingType.Element);

this .Columns.Add(this .columnPort);

public ER1Row NewER1Row() {
return ((ER1Row)(this .NewRow()));

protected override DataRow NewRowFromBuilder(DataRowBuilder builder) {
return new ER1Row(builder);

protected override System.Type GetRowType() {
return typeof (ER1Row);

protected override void OnRowChanged(DataRowChangeEventArgs e) {
base .OnRowChanged(e);
if ((this .ER1RowChanged!= null)){
this .ER1RowChanged(this , new ER1RowChangeEvent(((ER1Row)(e.Row)), e.Action));

protected override void OnRowChanging(DataRowChangeEventArgs e) {
base .OnRowChanging(e);
if ((this .ER1RowChanging!= null)){
this .ER1RowChanging(this , new ER1RowChangeEvent(((ER1Row)(e.Row)), e.Action));

protected override void OnRowDeleted(DataRowChangeEventArgs e) {
base .OnRowDeleted(e);
if ((this .ER1RowDeleted != null)){
this .ER1RowDeleted(this , new ER1RowChangeEvent(((ER1Row)(e.Row)), e.Action));

60

protected override void OnRowDeleting(DataRowChangeEventArgs e) {
base .OnRowDeleting(e);

if ((this .ER1RowDeleting != null 1)) {
this .ER1RowDeleting(this , new ER1RowChangeEvent(((ER1Row)(e.Row)), e.Action));
}
}
public void RemoveER1Row(ER1Row row) {
this .Rows.Remove(row);
}

}

[System.Diagnostics.DebuggerStepThrough()]
public class ER1Row : DataRow {

private ER1DataTable tableER1;

internal ER1Row(DataRowBuilder rb) :

base (rb) {
this .tableER1 = ((ER1DataTable)(this .Table));
}
public string IP{
get {
try {
return ((string)(this [this .tableER1.IPColumn]));
}
catch (InvalidCastException e) {
throw new StrongTypingException("Cannot get value because it
}
}
set {
this [this .tableER1.IPColumn] = value ;
}
}

is DBNull.", e);

61

public string
get {
try {

catch

set {
this

Password {
return ((string)(this [this .tableER1.PasswordColumn]));

(InvalidCastException €e) {
throw new StrongTypingException("Cannot get value because it

[this .tableER1.PasswordColumn] = value ;

public int Port{

get {
try {

catch

set {
this

return ((int)(this [this .tableER1.PortColumn]));

(InvalidCastException €e) {
throw new StrongTypingException("Cannot get value because it

[this .tableER1.PortColumn] = value ;

public bool IsIPNull() {
return this .IsNull(this .tableER1.IPColumn);

public void SetIPNull() {

this [this

.tableER1.IPColumn] = System.Convert.DBNull;

is DBNull.", e);

is DBNull.", e);

62

public bool IsPasswordNull() {
return this .IsNull(this .tableER1.PasswordColumn);

}
public void SetPasswordNull() {
this [this .tableER1.PasswordColumn] = System.Convert.DBNull;
}
public bool IsPortNull() {
return this .IsNull(this .tableER1.PortColumn);
}
public void SetPortNull() {
this [this .tableER1.PortColumn] = System.Convert.DBNull;
}

}

[System.Diagnostics.DebuggerStepThrough()]
public class ER1RowChangeEvent : EventArgs {

private ER1Row eventRow;
private DataRowAction eventAction;
public ER1RowChangeEvent(ER1Row row, DataRowAction action

this .eventRow = row;
this .eventAction = action;

public ER1Row Row {

get {
return this .eventRow;

)

63

public DataRowAction Action {

get {
return this .eventAction;

64

Robot.cs;

using
using
using
using
using
using

using

System;
System.Collections;
System.ComponentModel;
System.Data;
System.Configuration;
System.Threading;

ProtoSystems.Networking;

namespace ER1

/Il <summary>

/Il Summary description for Class1.

/Il </[summary>

public class Robot

{
public ProtoSystems.Networking.ScriptingTelnet telnet=
public bool connected= false ;

public Settings settings = new Settings();
public object syncVar= new object ();
public Mutex Ick = new Mutex();

ER1.Robot.Listener listeningThread,;

public Robot()
{

if (this .telnet.Connected== true)

this .telnet.Disconnect();

}

this .telnet.Address = "localhost";
this .telnet.Port = 9000;
this .telnet.Timeout = 0;

try

new ScriptingTelnet();

65

{

public

{
}

{

if (this .telnet.Connect()== false)
{
Console.Write("ER1: Failed to Connect (check R obot Control Center is running)\n");
}
else
{

this .telnet.SendMessage("login hest");
System.Threading.Thread.Sleep(500);
this .telnet.ReceivedData();

//start listening thread

listeningThread = new Listener(telnet,syncVar);
Thread tr = new Thread(new ThreadStart(listeningThread.Listening));
tr.Start();

catch (Exception ex)

string Command(string cmd)
string reply;
lock (syncVar)

Monitor.Pulse(syncVar);
this .telnet.SendMessage(cmd);
//Console.Write("Sender sent\n");
try
{
Monitor.Wait(syncVar);
//Console.Write("Sender no longer waiting\n");
reply = listeningThread.receivedData;

66

{

{

return reply;
catch

return "';

private string CleanDisplay(string input)

input.Replace("]","";
input = input.Replace("_(0x _(B",
input = input.Replace("_(0 x_(B",
input = input.Replace("_)0_= >""");
input = input.Replace("_[0m_>","");
input = input.Replace("_7_[7m","[");
input = input.Replace("_[0Om*_8 [7m","]");
input = input.Replace("_[0m","");

return input;

)5
|||II).

class Listener

public ProtoSystems.Networking.ScriptingTelnet telnet;

public String receivedData;

public object syncVar;

public string temp;

public Listener(ProtoSystems.Networking.ScriptingTelnet t
this .telnet = telnet;
this .syncVar = syncVar;

public void Listening()

elnet,

object

syncVar)

67

{

while (true)

{
Listen();

System.Threading.Thread.Sleep(10);

public void Listen()

lock (syncVar)

{
if (this .telnet.Connected== true)
if (this .telnet.ReceivedData()>0)
{
temp = CleanDisplay(this .telnet.GetReceivedData());
if (temp.Length>0)
/IConsole.Write("Listener got:" + temp +"\n");
receivedData = temp;
Monitor.Pulse(syncVar);
Monitor.Wait(syncVar);
}
}
}
}

private string CleanDisplay(string input)

input.Replace("|","");

input = input.Replace("_(0x _(B",
input = input.Replace("_(0 x_(B",
input = input.Replace("_)0_= >""";
input = input.Replace("_[0m_>","");

")
‘")

68

input = input.Replace("_7_[7m","[");
input = input.Replace("_[0Om*_8 [7m","]");
input = input.Replace("_[Om","");

return input;

69

ScriptingTelnet.cs:

using
using
using
using
using
using

System;

System.Net;
System.Net.Sockets;
System.Text;
System.IO;
System.Threading ;

namespace ProtoSystems.Networking

{

/Il <summary>
/Il Summary description for clsScriptingTelnet.
/Il </[summary>

public class ScriptingTelnet
{
private IPEndPoint iep ;
private AsyncCallback callbackProc ;
private string address;
private int port;
private int timeout;
private bool connected= false ;
private Sockets ;
Byte[] m_byBuff = new Byte[32767];
private string strWorkingData ="";
since our last processing
private string strFullLog ="";
public ScriptingTelnet()
{
}
public ScriptingTelnet(string Address,
{

address = Address;
port = Port;
timeout = CommandTimeout;

int

Port,

int

/I Holds everything received from the server

CommandTimeout)

70

private

int Port

get {return this .port;}
set {this .port= value ;}

string Address

get {return this .address;}
set {this .address = value ;}

int Timeout

get {return this .timeout;}
set {this .timeout= value ;}

bool Connected

get {return this .connected;}

void OnRecievedData(IAsyncResult ar)

/I Get The connection socket from the callback

Socket sock = (Socket)ar.AsyncState;

{

/I Get The data , if any
int nBytesRec = sock.EndReceive(ar);

if (nBytesRec>0)

/I Decode the received data
string sRecieved = CleanDisplay(Encoding.ASCII.GetString(

/I Write out the data
if (sRecieved.IndexOf("[c") !=-1) Negotiate(1);

m_byBuff, 0, nBytesRec));

71

if (sRecieved.IndexOf("[6n") !=-1) Negotiate(2);
Console.WriteLine(sRecieved);
strWorkingData += sRecieved;
strFullLog += sRecieved;

/I Launch another callback to listen for data

AsyncCallback recieveData = new AsyncCallback(OnRecievedData);

sock.BeginReceive(m_byBuff, 0, m_byBuff.Length

}
else
{

/' 1f no data was recieved then the connection is p
Console.WriteLine("Disconnected”, sock.RemoteE
sock.Shutdown(SocketShutdown.Both);
sock.Close();

I/Application.Exit();

}
}
private void DoSend(string strText)
{
try
{
Byte[] smk = new Byte[strText.Length];
for (int i=0;i<strText.Length ;i++)
{

Byte ss = Convert.ToByte(strText[i]);
smk[i] =ss;

//s.Send(smk,0 , smk.Length , SocketFlags.None);
/Is.Send(strText. ToCharArray(),strText.Length,Socke
IAsyncResult ar2 = s.BeginSend(smk , 0, smk.Le

, SocketFlags.None, recieveData , sock);

robably dead
ndPoint);

tFlags.None);
ngth , SocketFlags.None , callbackProc , s);

72

s.EndSend(ar2);

catch (Exception ers)

/IMessageBox.Show("ERROR IN RESPOND OPTIONS");

}
}
private void Negotiate(int WhichPart)
{
StringBuilder x;
string neg;
if (WhichPart == 1)
{
X = new StringBuilder();
x.Append ((char)27);
x.Append ((char)91);
x.Append ((char)63);
x.Append ((char)49);
x.Append ((char)59);
x.Append ((char)50);
x.Append ((char)99);
neg = x.ToString();
}
else
{

X = new StringBuilder();
x.Append ((char)27);
x.Append ((char)91);
x.Append ((char)50);
x.Append ((char)52);
x.Append ((char)59);
x.Append ((char)56);
x.Append ((char)48);

x.Append ((char)82);
neg = x.ToString();

}

SendMessage(neg, true);

private string CleanDisplay(string input)

{

I
I
I
I

input = input.Replace("_(0x _(B","|");
input = input.Replace("_(0 x_(B","|")
input = input.Replace("_)0_= >""");
input = input.Replace("_[0m_>","");
input = input.Replace("_7_[7m","[");
input = input.Replace("_[0Om*_8 [7m","]");
input = input.Replace("_[0m","");
return input;

<summary>

Connects to the telnet server.

</summary>

<returns> True upon connection, False if connection fails

public bool Connect()

IPHostEntry IPHost = Dns.Resolve(address);
string [Jaliases = IPHost.Aliases;
IPAddress[] addr = IPHost.AddressList;

try

/I Try a blocking connection to the server

</returns>

74

S = new Socket(AddressFamily.InterNetwork, SocketType.Stre
ProtocolType.Tcp);

iep = new IPEndPoint(addr[0],port);

s.Connect(iep) ;
/I'If the connect worked, setup a callback to start listening for incoming data

AsyncCallback recieveData = new AsyncCallback(OnRecievedData);

s.BeginReceive(m_byBuff, 0, m_byBuff.Length, S ocketFlags.None, recieveData , s);
/I All'is good
this .connected= true ;
return true ;

catch (Exception eeeee)
/I Something failed
return false ;
}
}

public void Disconnect()

if (s.Connected) s.Close();

}
/Il <summary>
/Il Waits for a specific string to be found in the str eam from the server
/Il </[summary>
/Il <param name="DataToWaitFor"> The string to wait for </param>
/Il <returns> Always returns O once the string has been found </returns>

public int WaitFor(string DataToWaitFor)

/I Get the starting time
long IngStart = DateTime.Now.AddSeconds(this .timeout).Ticks;

am,

75

strWorkingData = ";

long IngCurTime = 0;
while (strWorkingData.ToLower().IndexOf(DataToWaitFor.To Lower()) == -1)

/I Timeout logic

IngCurTime = DateTime.Now.Ticks;
if (IngCurTime > IngStart)

{

throw new Exception("Timed Out waiting for : " + DataToWaitF or);

}
Thread.Sleep(1);

return 0;

/Il <summary>

/Il Waits for one of several possible strings to be fo

und in the stream from the server

/Il </[summary>

/Il <param name="DataToWaitFor"> A delimited list of strings to wait for </param>

/Il <param name="BreakCharacters"> The character to break the delimited string with </param>

/Il <returns> The index (zero based) of the value in the delimite d list which was matched </returns>
public int WaitFor(string DataToWaitFor, string BreakCharacter)

/I Get the starting time
long IngStart = DateTime.Now.AddSeconds(this .timeout).Ticks;
long IngCurTime = 0;

string [] Breaks = DataToWaitFor.Split(BreakCharacter. ToCh arArray());
int intReturn = -1,

while (intReturn == -1)

/I Timeout logic
IngCurTime = DateTime.Now.Ticks;

76

if (IngCurTime > IngStart)
{

}

Thread.Sleep(1);
for (int i=0;i<Breaks.Length;i++)
{

throw new Exception("Timed Out waiting for : " + DataToWaitF or);

if (strWorkingData.ToLower().IndexOf(Breaks][i]. ToLowe r()) '=-1)
{

}

intReturn =1 ;

}
}

return intReturn;

/Il <summary>

/Il Sends a message to the server

/Il </[summary>

/Il <param name="Message"> The message to send to the server </param>

/Il <param name="SuppressCarriageReturn"> True if you do not want to end the message with a ¢

return </param>
public void SendMessage(string Message, bool SuppressCarriageReturn)
{

strFullLog += "\"\nSENDING DATA ====>" + Messag e.ToUpper() + "\r\n";
Console.WriteLine("SENDING DATA ====>" + Messag e.ToUpper());

if (! SuppressCarriageReturn)

DoSend(Message + "\r'");
}

else

{

arriage

77

I
I
I
I

DoSend(Message);

}
<summary>
Sends a message to the server, automatically appen ding a carriage return to it
</summary>
<param name="Message"> The message to send to the server </param>

public void SendMessage(string Message)

I
I
I
I
I
I
I

strFullLog += "\N\nSENDING DATA ====>" + Messag e.ToUpper() + "\r\n";
Console.WriteLine("SENDING DATA ====>" + Messag e.ToUpper());

DoSend(Message + "\n\n");

<summary>

Waits for a specific string to be found in the str eam from the server.

Once that string is found, sends a message to the server

</summary>

<param name="WaitFor"> The string to be found in the server stream </param>

<param name="Message"> The message to send to the server </param>

<returns> Returns true once the string has been found, and th e message has been sent

public bool WaitAndSend(string WaitFor, string Message)

I
I
I

this .WaitFor(WaitFor);
SendMessage(Message);
return true ;

<summary>
Sends a message to the server, and waits until the designated
response is received

</returns>

78

{

{

{

/Il </summary>
/Il <param name="Message"> The message to send to the server
/Il <param name="WaitFor'> The response to wait for
/Il <returns> True if the process was successful

public

public

int SendAndWait(string Message, string

SendMessage(Message);

this .WaitFor(WaitFor);
return 0;

int SendAndWait(string Message, string

SendMessage(Message);

int t= this .WaitFor(WaitFor,BreakCharacter);
return

I <summary>
/Il Afull log of session activity
/Il </summary>

public

{
}

string SessionLog
get

return strFullLog;

/Il <summary>
/Il Clears all data in the session log
/Il </summary>

public

void ClearSessionLog()

</param>

<[returns>
WaitFor)

WaitFor,

string

</param>

BreakCharacter)

79

}
/Il <summary>
/Il Searches for two strings in the session log, and i
/Il all the data between them.
/Il </[summary>
/Il <param name="StartingString"> The first string to find
/Il <param name="EndingString"> The second string to find
/Il <param name="ReturnlfNotFound">
/Il <returns> All the data between the end of the starting string
string </returns>
public string FindStringBetween(string StartingString,
{
int intStart;
int intEnd,
intStart = strFullLog.ToLower().IndexOf(Starting
if (intStart ==-1)
{
return ReturnlfNotFound;
}
intStart += StartingString.Length;
intEnd = striullLog.ToLower().IndexOf(EndingStri
if (intEnd ==-1)
/I The string was not found
return ReturnlfNotFound;
}
/I The string was found, let's clean it up and retu
return strFullLog.Substring(intStart, intEnd-intStart). Tr
}

strFullLog =™;

The string to be returned if a match is not found

f both are found, returns

</param>
</param>
</param>
and the beginning of the end
string EndingString,

string ReturnlfNotFound)

String. ToLower());

ng.ToLower(),intStart);

it

im();

80

public int ReceivedData()

{
return this .strWorkingData.Length;

public string GetReceivedData()

{
string data= this .strWorkingData;
this .strWorkingData="";
return data;
}
}
}
Settings.cs.

using System;
namespace ER1

/Il <summary>

/Il Summary description for Settings.
/Il </[summary>

public class Settings

{

ApplicationSettings settingsDataSet= new ApplicationSettings();
string fileName=System.lO.Path.GetFullPath(".") + @"\AppS ettings.xml";
private string ip="",
private string password="";
private int port;
public Settings()

{

try
{

}

settingsDataSet.ReadXmi(fleName);

81

}
{

{

public

public

public

public

catch

{

}

ip = ((ApplicationSettings.ER1Row)settingsDataSe
port = ((ApplicationSettings.ER1Row)settingsData

password = ((ApplicationSettings.ER1Row)settings

string Password

get {return password;}
set

password= value ;
((ApplicationSettings.ER1Row)settingsDataSet.ER

string IP

get {return ip;}
set

ip= value ;
((ApplicationSettings.ER1Row)settingsDataSet.ER

int Port

get {return port;}

set {
port= value ;
((ApplicationSettings.ER1Row)settingsDataSet.ER

}

void Save()

00);

t.ER1.Rows[Q]).IP;
Set.ER1.Rows][0]).Port;
DataSet.ER1.Rows|[0]).Password;

1.Rows[0]).Password=password;

1.Rows[0]).IP=ip;

1.Rows[0]).Port=port;

82

this .settingsDataSet.WriteXml(fileName);

17. Appendix D: Landmark extraction code

Landmarks.cs
using System;

namespace APUData

{
/Il <summary>
/Il Summary description for Landmarks.
/Il </[summary>
public class Landmarks
{
double conv = Math.PI/180.0; /I Convert to radians
const int MAXLANDMARKS = 3000;
const double MAXERROR =0.5; //if alandmark is within 20 cm of another landmar
public int MINOBSERVATIONS = 15; // Number of times a landmark must be observed to b
landmark

k its the same landmark

e recognized as a

83

const int LIFE =40;

const double MAX_RANGE = 1;

const int MAXTRIALS = 1000; /IRANSAC: max times to run algorithm

const int MAXSAMPLE =10; //RANSAC: randomly select X points

const int MINLINEPOINTS = 30; /IRANSAC: if less than 40 points left don't bother trying to find
consensus (stop algorithm)

const double RANSAC_TOLERANCE =0.05; //RANSAC: if point is within x distance of line its part of line

const int RANSAC_CONSENSUS = 30; //RANSAC: at least 30 votes required to determine i faline

{

double degreesPerScan =0.5;

public

class

public
public
public
public
public
public

landmark

double [] pos; /Nlandmarks (x,y) position relative to map

int id; /lthe landmarks unique 1D

int life; /la life counter used to determine whether to disca rd a landmark
int totalTimesObserved; /lthe number of times we have seen landmark

double range; //last observed range to landmark

double bearing; /llast observed bearing to landmark

/IRANSAC: Now store equation of a line

public
public

double a;
double b;

84

public double rangeError;
(to calculate error)

public double bearingError;
(to calculate error)

public landmark()
totalTimesObserved = O;

id=-1;
life = LIFE;

pos = new double [2];

a=-1;
b=-1;

/Ikeep track of bad landmarks?

landmark(] landmarkDB =

int DBSize =0;

int [,] IDtolD =
int EKFLandmarks = 0;

/ldistance from robot position to the wall we are u

/Ibearing from robot position to the wall we are us

new landmark[MAXLANDMARKS];

new int [MAXLANDMARKS,?2];

sing as a landmark

ing as a landmark

85

{

{

{

public

public

public

int GetSlamID(int id)

for (int i=0; i<EKFLandmarks; i++)

if (IDtolD[i, 0] == id)
return IDtolD[i,1];

return -1;

int AddSlamID(int landmarkliD, int
IDtolD[EKFLandmarks, 0] = landmarkID;
IDtolD[EKFLandmarks, 1] = slamlID;

EKFLandmarks++;

return 0;

Landmarks(double degreesPerScan)

this .degreesPerScan = degreesPerScan;

slamID)

86

{

public

for (int i=0;i<landmarkDB.Length; i++)

landmarkDBJi] = new landmark();

int RemoveBadLandmarks(double [] laserdata,

double maxrange = 0;

for (int i=1;i<laserdata.Length-1; i++)

double [] robotPosition)

/ldistance further away than 8.1m we assume are fai led returns

/Iwe get the laser data with max range
if (laserdata[i-1] < 8.1)
if (laserdatafi+1] < 8.1)
if (laserdatali] > maxrange)

maxrange = laserdatali;

maxrange = MAX_RANGE;
double [] Xbounds = new double [4];
double [] Ybounds = new double [4];

/lget bounds of rectangular box to remove bad landm

arks from

87

Xbounds[0] =Math.Cos((1 * degreesPerScan * conv)
maxrange+robotPosition[0];

Ybounds[0] =Math.Sin((1 * degreesPerScan * conv)
maxrange+robotPosition[1];

Xbounds[1] =Xbounds[0]+Math.Cos((180 * degreesPe
maxrange;

Ybounds[1] =Ybounds[0]+Math.Sin((180 * degreesPe
maxrange;

Xbounds|[2] =Math.Cos((359 * degreesPerScan * con
maxrange+robotPosition[0];

Ybounds[2] =Math.Sin((359 * degreesPerScan * con
maxrange+robotPosition[1];

Xbounds[3] =Xbounds[2]+Math.Cos((180 * degreesPe
maxrange;

Ybounds[3] =Ybounds[2]+Math.Sin((180 * degreesPe

maxrange;

[*
/Il the below code starts the box 1 meter in fron
Xbounds[0] =Math.Cos((0 * degreesPerScan * conv)
maxrange+robotPosition[0];
Xbounds[1] =Xbounds[0]+Math.Cos((180 * degreesPe

maxrange;

+(robotPosition[2]*Math.P1/180)) *

+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

v)+(robotPosition[2]*Math.P1/180)) *

v)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

t of robot
+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

88

Xbounds[0] =Xbounds[0]+Math.Cos((180 * degreesPe
/Imake box start 1 meter ahead of robot

Ybounds[0] =Math.Sin((0 * degreesPerScan * conv)
maxrange+robotPosition[1];

Ybounds[1] =Ybounds[0]+Math.Sin((180 * degreesPe
maxrange;

Ybounds|[0] =Ybounds[0]+Math.Sin((180 * degreesPe

/Imake box start 1 meter ahead of robot

Xbounds[2] =Math.Cos((360 * degreesPerScan * con
maxrange+robotPosition[0];

Xbounds[3] =Xbounds[2]+Math.Cos((180 * degreesPe
maxrange;

Xbounds[2] =Xbounds[2]+Math.Cos((180 * degreesPe
/Imake box start 1 meter ahead of robot

Ybounds[2] =Math.Sin((360 * degreesPerScan * con
maxrange+robotPosition[1];

Ybounds[3] =Ybounds[2]+Math.Sin((180 * degreesPe
maxrange;

Ybounds|[2] =Ybounds[2]+Math.Sin((180 * degreesPe
/Imake box start 1 meter ahead of robot

*/

rScan * conv)+(robotPosition[2]*Math.P1/180));

+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180));

v)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180));

v)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180)) *

rScan * conv)+(robotPosition[2]*Math.P1/180));

89

/Inow check DB for landmarks that are within this b (0)'¢

/ldecrease life of all landmarks in box. If the li fe reaches zero, remove landmark

double pntx, pnty;
for (int k=0; k<DBSize+1; k++)

{
pntx = landmarkDBIK].pos[O];
pnty = landmarkDBIK].pos[1];
int i=0;
int j=0;
bool inRectangle;
/lif(robotPosition[2]>0 && robotPosition[2]<180)
if (robotPosition[0]<0 || robotPosition[1]<0)
inRectangle = false ;
else
inRectangle = true ;
for (i=0;i<4;i++)
{
if (((((Ybounds[i] <= pnty) && (pnty < Ybounds[j])) | | ((YboundsJj] <= pnty) && (pnty
< YboundsJi]))) && (pntx < (Xbounds[j] - Xbounds]i]) * (pnty - Ybounds[i]) / (Ybounds[j] - Ybounds]i]) +

Xboundsli])))

if (inRectangle== false)

inRectangle= true ;
else

inRectangle= false ;

j=i
i=i+1;

if (inRectangle)
/lin rectangle so decrease life and maybe remove

landmarkDBI[K].life--;
if (landmarkDB[K].life<=0)

for (int kk=k; kk<DBSize; kk++) /lremove landmark by copying down rest of DB

if (kk==DBSize-1)

landmarkDBJ[kk].pos[0] = landmarkDB[kk+1].po

landmarkDBJ[kk].pos[1] = landmarkDB[kk+1].po

landmarkDBJ[KK].life = landmarkDBI[kk+1].life

landmarkDBJ[KK].id = landmarkDB[kk+1].id;

landmarkDBJ[kk].totalTimesObserved =
landmarkDB[kk+1].totalTimesObserved;

s[0];
s[1];

91

landmarkDB[kk+1].totalTimesObserved;

{

public

/Ireturns the found landmarks

landmark[] tempLandmarks =

else

{
landmarkDB[kk+1].id--;
landmarkDBJ[kk].pos[0] = landmarkDB[kk+1].po
landmarkDBJ[kk].pos[1] = landmarkDB[kk+1].po
landmarkDBJ[KkK].life = landmarkDBI[kk+1].life
landmarkDBJ[KK].id = landmarkDB[kk+1].id;
landmarkDBJ[kk].totalTimesObserved =
}
}
DBSize--;
}
}
}
return 0;
landmark[] UpdateAndAddLineLandmarks(landmark[] ex tractedLandmarks)

new landmark[extractedLandmarks.Length];

s[0];
s[1];

92

for (int i=0; i<extractedLandmarks.Length; i++)
tempLandmarks[i] = UpdateLandmark(extractedLandm arksi]);

return tempLandmarks;

/*
public landmark[] UpdateAndAddLandmarks(double[] laserdata, double[] robotPosition)
{

/Ihave a large array to keep track of found land marks
landmark[] tempLandmarks = new landmark[400];
for(int i=0; i<tempLandmarks.Length;i++)

tempLandmarks][i]= new landmark();
int totalFound = O;

double val = laserdata[0];
for (inti=1;i<laserdata.Length - 1; i++)
{
/I Check for error measurement in laser data
if (laserdata[i-1] < 8.1)
if (laserdata[i+1] < 8.1)
if (laserdata[i-1] - laserdatali]) + (laserd ata[i+1] - laserdata[i]) > 0.5)

93

tempLandmarks[i] = UpdateLandmark(laserdata[

else
if((laserdatali-1] - laserdata[i]) > 0.3)

tempLandmarks[i] = UpdateLandmark(laserdata[

else if (laserdata[i+1] < 8.1)
if((laserdatali+1] - laserdata[i]) > 0.3)

tempLandmarks[i] = UpdateLandmark(laserdata

}

/lget total found landmarks so you can return ar
for(int i=0; i<tempLandmarks.Length;i++)
if(((int)tempLandmarksi].id) !'=-1)

totalFound++;

/Inow return found landmarks in an array of corr

landmark[] foundLandmarks = new landmark(totalFo

/lcopy landmarks into array of correct dimension
intj=0;
for(int i=0; i<((landmark[])tempLandmarks).Lengt
if(((landmark)tempLandmarksii]).id !=-1)
{
foundLandmarks[j] = (landmark)tempLandmarksii]

j++;

ray of correct dimensions

ect dimensions
und];

h;i++)

i], i, robotPosition);

i], i, robotPosition);

[i], i, robotPosition);

94

return foundLandmarks;

}
*/
public landmark[] UpdateAndAddLandmarksUsingEKFResults(bool [] matched, int []id, double [] ranges,
double [] bearings, double [] robotPosition)
{
landmark[] foundLandmarks = new landmark[matched.Length];
for (int i=0;i< matched.Length; i++)
{
foundLandmarks][i] = UpdateLandmark(matched]i], id[i], ranges]i], bearings]i],
robotPosition);
}
return foundLandmarks;
}
private landmark UpdateLandmark(bool matched, int id, double distance, double readingNo, double []
robotPosition)
{
landmark Im;
if (matched)
{
I/EKF matched landmark so increase times landmark h as been observed

95

distance;

distance;

else

landmarkDB]Jid].totalTimesObserved++;
Im = landmarkDBJid];

/[EKF failed to match landmark so add it to DB as n

Im = new landmark();

/lconvert landmark to map coordinate

Im.pos[0] =Math.Cos((readingNo * degreesPerScan

Im.pos[1] =Math.Sin((readingNo * degreesPerScan

Im.pos[0]+=robotPosition[0]; /ladd robot position

Im.pos[1]+=robotPosition[1]; /ladd robot position

Im.bearing = readingNo;

Im.range = distance;

id = AddToDB(Im);

Im.id = id;

ew landmark

* conv)+(robotPosition[2]*Math.P1/180)) *

* conv)+(robotPosition[2]*Math.P1/180)) *

96

{

private

[/Ireturn landmarks

return Im;

landmark UpdateLandmark(landmark Im)

/ltry to do data-association on landmark.

int id = GetAssociation(Im);

/lif we failed to associate landmark, then add it t
if (id==-1)
id = AddToDB(Im);

Im.id = id;

public

/Ireturn landmarks

return Im;

int UpdateLineLandmark(landmark Im)

/ltry to do data-association on landmark.

int id = GetAssociation(Im);

/lif we failed to associate landmark, then add it t

97

public

if (id==-1)
id = AddToDB(Im);

return id;

landmark[] ExtractLineLandmarks(double [] laserdata, double [] robotPosition)

/ltwo arrays corresponding to found lines
double []la= new double [100];
double []lb= new double [100];
int totalLines = 0;

/larray of laser data points corresponding to the s een lines
int [] linepoints = new int [laserdata.Length];

int totalLinepoints = 0;

/Ihave a large array to keep track of found landmar ks

landmark[] tempLandmarks = new landmark[400];

for (int i=0; i<tempLandmarks.Length;i++)

tempLandmarks]i]= new landmark();

int totalFound = 0O;

double val = laserdata[0];

98

double lastreading = laserdata[2];

double lastlastreading = laserdata[2];

/*

/Iremoves worst outliers (points which for sure

for (inti=2;i<laserdata.Length - 1; i++)

/I Check for error measurement in laser data
if (laserdatali] < 8.1)
if(Math.Abs(laserdata]i]-lastreading)+Math.Abs

{
{
}
else
{
}

}

linepoints[totalLinepoints] = i;
totalLinepoints++;

/ltempLandmarks]i] = GetLandmark(laserdatali]
lastreading = laserdata[i];

lastreading = laserdata[i-1];

lastreading = laserdata[i];

lastlastreading = laserdata[i-1];

aren't on any lines)

(lastreading-lastlastreading) < 0.2)

, 1, robotPosition);

99

*/
/IFIXME - OR RATHER REMOVE ME SOMEHOW...

for (int i=0;i<laserdata.Length - 1; i++)

linepoints[totalLinepoints] = i;

totalLinepoints++;

#region RANSAC
/IRANSAC ALGORITHM
int noTrials = 0;
Random rnd = new Random();
while (noTrials<MAXTRIALS && totalLinepoints > MINLINEPOI

int [] rndSelectedPoints = new int [MAXSAMPLE];
int temp=0;

bool newpoint;

/lI- Randomly select a subset S1 of n data points an
/lcompute the model M1

/lInitial version chooses entirely randomly. Now ¢

/lone point randomly and then sample from neighbour
/Iradius

int centerPoint = rnd.Next(tMAXSAMPLE, totalLinepoints-

NTS)

hoose

s within some defined

1);

100

rndSelectedPoints[0] = centerPoint;
for (int i=1;i<KMAXSAMPLE; i++)

newpoint = false

while (Inewpoint)

{
temp = centerPoint + (rnd.Next(2)-1)*rnd.Next (0, MAXSAMPLE);
for (int j=0;<i;j++)
{
if (rndSelectedPoints[j] == temp)
break ; //point has already been selected
if (j>=i-1)
newpoint = true ; //point has not already been selected
}
}

rndSelectedPoints[i] = temp;

/lcompute model M1
double a=0;
double b=0;

/ly = a+ bx

101

LeastSquaresLineEstimate(laserdata, robotPositi on, rndSelectedPoints, MAXSAMPLE, ref a, ref
b);

/I- Determine the consensus set S1* of points is P
/lcompatible with M1 (within some error tolerance)
int [] consensusPoints = new int [laserdata.Length];

int totalConsensusPoints = 0;

int [] newLinePoints = new int [laserdata.Length];

int totalNewLinePoints = 0;

double x=0,y =0;
double d=0;

for (int i=0; i<totalLinepoints; i++)

/lconvert ranges and bearing to coordinates

x =(Math.Cos((linepoints[i] * degreesPerScan * conv) + robotPosition[2]*conv) *
laserdata[linepoints]i]])+ robotPosition[0];

y =(Math.Sin((linepoints][i] * degreesPerScan * conv) + robotPosition[2]*conv) *
laserdata[linepoints][i]])+ robotPosition[1];

/Ix =(Math.Cos((linepoints[i] * degreesPerScan * co nv)) *
laserdata[linepoints]i]]);//+robotPosition[0];

102

/ly =(Math.Sin((linepoints][i] * degreesPerScan * co

laserdata[linepointsi]]);//+robotPosition[1];

d = DistanceToLine(x, y, a, b);

if (d<RANSAC_TOLERANCE)

{

/ladd points which are close to line
consensusPoints[totalConsensusPoints] = linep
totalConsensusPoints++;

}
else
{

/ladd points which are not close to line
newLinePoints[totalNewLinePoints] = linepoint
totalNewLinePoints++;

}

/l-1f #(S1*) > t, use S1* to compute (maybe using

/Isquares) a new model M1*

least

nv)) *

ointsli];

slil;

103

if (totalConsensusPoints>RANSAC_CONSENSUS)

{
/ICalculate updated line equation based on consensu S points
LeastSquaresLineEstimate(laserdata, robotPosit ion, consensusPoints,
totalConsensusPoints, ref a, ref b);
/lfor now add points associated to line as landmark s to see results

for (int i=0; i<totalConsensusPoints; i++)

{
/ltempLandmarks[consensusPoints]i]] = GetLandmark(l aserdata[consensusPointsJi]],
consensusPoints]i], robotPosition);
/IRemove points that have now been associated to th is line
newLinePoints.CopyTo(linepoints, 0);
totalLinepoints = totalNewLinePoints;
}

/ladd line to found lines
laftotalLines] = a;
Ib[totalLines] = b;
totalLines++;

/Irestart search since we found a line
/InoTrials = MAXTRIALS; //lwhen maxtrials = debuggi ng

noTrials = 0;

else

104

/IDEBUG add point that we chose as middle value

/ltempLandmarks[centerPoint] = GetLandmark(laserdat a[centerPoint], centerPoint,
robotPosition);

/l-1f #(S1*) < t, randomly select another subset S 2 and

/lrepeat

/I If, after some predetermined number of trials t here is

/Ino consensus set with t points, return with failu re

noTrials++;

}
#endregion

[[for each line we found:
/Icalculate the point on line closest to origin (0, 0)
/ladd this point as a landmark

for (int i=0;i < totalLines; i++)

tempLandmarks][i] = GetLineLandmark(la[i], Ib[i] , robotPosition);
/ltempLandmarks[i+1] = GetLine(la]i], Ib[i]);

105

int

arraySize,

{

landmark[] foundLandmarks =

private

ref

/ffor debug add origin as landmark

/ltempLandmarks]totalLines+1] = GetOrigin();

/ltempLandmarks][i] = GetLandmark(laserdata]i], i, r

/Inow return found landmarks in an array of correct

new landmark[totalLines];

/lcopy landmarks into array of correct dimensions
for (int i=0; i<foundLandmarks.Length;i++)

{

foundLandmarks][i] = (landmark)tempLandmarksii]

return foundLandmarks;

void LeastSquaresLineEstimate(double [] laserdata,
double a, ref double b)

double y; /Iy coordinate
double x; //x coordinate
double sumY=0; //sum of y coordinates

double sumYY=0; //sum of y"2 for each coordinate

obotPosition);

dimensions

double [] robotPosition,

int [] SelectedPoints,

106

double sumX=0; //sum of x coordinates
double sumXX=0; //sum of x"2 for each coordinate

double sumYX=0; //sum of y*x for each point

/IDEBUG
J*
double[] testX = {0, 1};
double[] testY = {1, 1};
for(inti=0;i<2;i++)
{
/lconvert ranges and bearing to coordinates
x = testX[i];
y = testY[i];

sumyY +=vy;

sumYY += Math.Pow(y,2);
sumX +=X;

sumXX += Math.Pow(x,2);
sumYX += y*x;

a = (sumY*sumXX-sumX*sumY X)/(testX.Length*sumXX-
b = (testX.Length*sumY X-sumX*sumY)/(testX.Length
*/

Math.Pow(sumX, 2));
*sumXX-Math.Pow(sumX, 2));

107

for (int i=0;i<arraySize; i++)

/lconvert ranges and bearing to coordinates
x =(Math.Cos((SelectedPoints][i] * degreesPerSca
laserdata[SelectedPoints]i]])+robotPosition[0];
y =(Math.Sin((SelectedPoints]i] * degreesPerSca

laserdata[SelectedPoints]i]])+robotPosition[1];

/Ix =(Math.Cos((rndSelectedPoints[i] * degreesPerSc
laserdata[rndSelectedPoints]i]]);//+robotPosition[0 I;
/ly =(Math.Sin((rndSelectedPoints[i] * degreesPerSc

laserdata[rndSelectedPoints]i]]);//+robotPosition[1 I;

sumy +=vy;

sumYY += Math.Pow(y,2);
sumX +=X;

sumXX += Math.Pow(x,2);
sumyYX += y*x;

b = (sumY*sumXX-sumX*sumY X)/(arraySize*sumXX-Mat

a = (arraySize*sumY X-sumX*sumY)/(arraySize*sumXX

n * conv) + robotPosition[2]*conv) *

n * conv) + robotPosition[2]*conv) *

an * conv)) *

an * conv)) *

h.Pow(sumX, 2));
-Math.Pow(sumX, 2));

108

bo

{

private double DistanceToLine(double x, double y, double a, double b)

J*
/ly=ax+b

/l0=ax+b-y

double d = Math.Abs((a*x - y + b)/(Math.Sqrt(Mat
*/

/lour goal is to calculate point on line closest to

/lthen use this to calculate distance between them.

/lcalculate line perpendicular to input line. a*ao
double ao=-1.0/a;
/ly = aox + bo =>bo =y - aox

double bo =Yy -ao*x;
/lget intersection betweeny = ax + b and y = aox +

/Isoaox+bo=ax+b=>aox-ax=b-bo=>x=

double px = (b - bo)/(ao - a);
double py = ((ao*(b - bo))/(ao - a)) + bo;

h.Pow(a,2)+ Math.Pow(b,2))));

X,y

1
'
I

bo
(b - bo)/(ao - @), y = ao*(b - bo)/(ao - a) +

109

return Distance(x, y, pX, py);

}
public landmark[] ExtractSpikeLandmarks(double [] laserdata, double [] robotPosition)
{
/Ihave a large array to keep track of found landmar ks
landmark[] tempLandmarks = new landmark[400];

for (int i=0; i<tempLandmarks.Length;i++)

tempLandmarks]i]= new landmark();

int totalFound = 0O;

double val = laserdata[0];
for (int i=1;i<laserdata.Length - 1; i++)

/I Check for error measurement in laser data
if (laserdata[i-1] < 8.1)
if (laserdatafi+1] < 8.1)

if ((laserdata[i-1] - laserdata][i]) + (laserdata[i+1] - laserdata]i]) > 0.5)
tempLandmarks[i] = GetLandmark(laserdata(i], i, robotPosition);
else

if ((laserdata[i-1] - laserdatali]) > 0.3)

110

tempLandmarks][i] = GetLandmark(laserdata(i],
else if (laserdatafi+1] <8.1)
if ((laserdata[i+1] - laserdata]i]) > 0.3)

tempLandmarks[i] = GetLandmark(laserdatali]

/lget total found landmarks so you can return array of correct dimensions
for (int i=0;i<tempLandmarks.Length;i++)
if (((int)tempLandmarks]i].id) !=-1)
totalFound++;

/Inow return found landmarks in an array of correct dimensions

landmark[] foundLandmarks = new landmark[totalFound];

/lcopy landmarks into array of correct dimensions

int j=0;

for (int i=0; i<((landmark[])tempLandmarks).Length;i++)
if (((landmark)tempLandmarksi]).id !=-1)

foundLandmarks][j] = (landmark)tempLandmarksii] ;

j++;

return foundLandmarks;

i, robotPosition);

, 1, robotPosition);

111

private landmark GetLandmark(double range, int readingNo, double [] robotPosition)

{

landmark Im = new landmark();

/lconvert landmark to map coordinate
Im.pos[0] =Math.Cos((readingNo * degreesPerScan * conv)+(robotPosition[2]*Math.P1/180)) * range;
Im.pos[1] =Math.Sin((readingNo * degreesPerScan * conv)+(robotPosition[2]*Math.P1/180)) * range;

Im.pos[0]+=robotPosition[0]; /ladd robot position
Im.pos[1]+=robotPosition[1]; /ladd robot position

Im.range = range;

Im.bearing = readingNo;

/lassociate landmark to closest landmark.
int id=-1;
int totalTimesObserved =0;

GetClosestAssociation(Im, ref id, ref totalTimesObserved);
Im.id = id;

/Ireturn landmarks

return Im;

112

bo

{

private

landmark GetLineLandmark(double a, double b,
/lour goal is to calculate point on line closest to
/lcalculate line perpendicular to input line. a*ao
double ao=-1.0/a;
/Nlandmark position
double x=b/(ao - a);

double y = (ao*b)/(ao - a);

double range = Math.Sqgrt(Math.Pow(x-robotPosition[0],2) +
double bearing = Math.Atan((y-robotPosition[1])/(x-robotP

/Inow do same calculation but get point on wall clo
/ly = aox + bo =>bo =y - aox

double bo = robotPosition[1] - ao*robotPosition[0];
/lget intersection betweeny = ax + b and y = aox +

/Isoaox+bo=ax+b=>aox-ax=b-bo=>x=

double px = (b - bo)/(ao - a);

double [] robotPosition)

origin (0,0)

1
'
I

Math.Pow(y-robotPosition[1],2));
osition[0])) - robotPosition[2];

sest to robot instead

bo
(b - bo)/(ao - a), y = ao*(b - bo)/(ao - a) +

113

robotPosition[2];

double py = ((ao*(b - bo))/(ao - a)) + bo;

double rangeError = Distance(robotPosition[0], robotPosit
double bearingError = Math.Atan((py - robotPosition[1])/(

//do you subtract or add robot bearing? | am not su

landmark Im = new landmark();

/lconvert landmark to map coordinate
Im.pos[0] =x;

Im.pos[1] =y;

Im.range = range;

Im.bearing = bearing;

Im.a=a;
Im.b = b;

Im.rangeError = rangeError;

Im.bearingError = bearingError;

/lassociate landmark to closest landmark.
int id=0;

int totalTimesObserved = 0;

re!

ion[1], px, py);
px - robotPosition[0])) -

114

GetClosestAssociation(Im, ref id, ref totalTimesObserved);

Im.id =id;
Im.totalTimesObserved = totalTimesObserved;

/Ireturn landmarks

return Im;
}
private landmark GetLine(double a, double b)
{
/lour goal is to calculate point on line closest to origin (0,0)

/lcalculate line perpendicular to input line. a*ao

1
'
I

double ao=-1.0/a;

/lget intersection between y = ax + b and y = aox

/lso aox =ax + b =>aox-ax=b=>x=b/(ao - a) , Y = ao*b/(ao - a)

double x=b/(ao - a);
double y = (ao*b)/(ao - a);

115

landmark Im = new landmark();

/lconvert landmark to map coordinate
Im.pos[0] =x;

Im.pos[1] =y;

Im.range = -1;
Im.bearing = -1;
Im.a=a;

Im.b = b;

/lassociate landmark to closest landmark.
int id=-1;
int totalTimesObserved = 0;

GetClosestAssociation(Im, ref id, ref totalTimesObserved);
Im.id = id;

/Ireturn landmarks

return Im;

private landmark GetOrigin()
{

116

landmark Im = new landmark();

/lconvert landmark to map coordinate
Im.pos[0] =0;
Im.pos[1] =0;

Im.range = -1;

Im.bearing = -1;

/lassociate landmark to closest landmark.
int id=-1;

int totalTimesObserved = 0;

GetClosestAssociation(Im, ref id, ref totalTimesObserved);
Im.id = id;
/Ireturn landmarks
return Im;
private void GetClosestAssociation(landmark Im, ref int id, ref int totalTimesObserved)

117

/lgiven a landmark we find the closest landmark in DB
int closestLandmark = 0;

double temp;

double leastDistance = 99999; //99999m is least initial distance, its big
for (int i=0;i<DBSize; i++)
{
/lonly associate to landmarks we have seen more tha n MINOBSERVATIONS times
if (landmarkDBJi].totalTimesObserved>MINOBSERVATIONS)
{
temp = Distance(Im, landmarkDBJi]);
if (temp<leastDistance)
{
leastDistance = temp;
closestLandmark = landmarkDB]i].id;
}
}
}
if (leastDistance == 99999)
id=-1;
else
{
id = landmarkDB|[closestLandmark].id;
totalTimesObserved = landmarkDBJclosestLandmark].totalTimesObserved;
}

118

private int GetAssociation(landmark Im)

{ /lthis method needs to be improved so we use innova tion as a validation gate
/lcurrently we just check if a landmark is within s ome predetermined distance of a landmark in DB
for (int i=0;i<DBSize; i++)
{
if (Distance(lIm, landmarkDBJi])<MAXERROR && ((landmar k)landmarkDBJi]).id != -1)
{
((landmark)landmarkDB(i]).life=LIFE; /Nlandmark seen so reset its life counter
((landmark)landmarkDB(i]).total TimesObserved++ ; llincrease number of times we seen
landmark

((landmark)landmarkDB(i]).bearing = Im.bearing ; Ilset last bearing seen at
((landmark)landmarkDB([i]).range = Im.range; //set last range seen at

return ((landmark)landmarkDBJi]).id;

}
}
return -1;
}
public landmark[] RemoveDoubles(landmark[] extractedLandm arks)
{

119

int uniquelmrks = 0;
double leastDistance = 99999;
double temp;

landmark[] uniqueLandmarks = new landmark[100];

for (int i=0; i<extractedLandmarks.Length; i++)

{
/Iremove landmarks that didn't get associated and a Iso pass
/Nlandmarks through our temporary landmark validati on gate
if (extractedLandmarks][i].id !=-1 && GetAssociation(extractedLandmarks][i]) != -1)

leastDistance = 99999;

/Iremove doubles in extractedLandmarks
/if two observations match same landmark, take clo sest landmark

for (int j=0; j<extractedLandmarks.Length; j++)

if (extractedLandmarks]i].id == extractedLandmarksj]. id)

if (j<i)
break ;
temp = Distance(extractedLandmarks|j],
landmarkDB[extractedLandmarks[j].id]);

if (temp<leastDistance)

120

leastDistance = temp;

uniqueLandmarks[uniquelmrks] = extractedLan

if (leastDistance !=99999)
uniquelmrks++;

/lcopy landmarks over into an array of correct dime nsions
extractedLandmarks = new landmark[uniquelmrks];

for (int i=0;i<uniquelmrks; i++)

extractedLandmarks[i] = uniqueLandmarks]i];

return extractedLandmarks;

}
public int AlignLandmarkData(landmark[] extractedLandmarks, ref bool [] matched,
double [] ranges, ref double [] bearings, ref double [,] Imrks, ref double [,] exImrks)
{

dmarksl[j];

ref

int []id,

ref

121

int uniquelmrks = 0;
double leastDistance = 99999;
double temp;

landmark[] uniqueLandmarks = new landmark[100];
for (int i=0; i<extractedLandmarks.Length; i++)
if (extractedLandmarksli].id !=-1)
leastDistance = 99999;
/l[remove doubles in extractedLandmarks
/lif two observations match same landmark, take clo sest landmark

for (int j=0; j<extractedLandmarks.Length; j++)

if (extractedLandmarks]i].id == extractedLandmarksj]. id)

if (j<i)
break ;
temp = Distance(extractedLandmarks|j],
landmarkDB[extractedLandmarks[j].id]);

if (temp<leastDistance)

leastDistance = temp;

122

uniqueLandmarks[uniquelmrks] = extractedLan

if (leastDistance !=99999)

uniquelmrks++;

}

matched = new bool [uniquelmrks];
id= new int [uniquelmrks];

ranges = new double [uniquelmrks];
bearings = new double [uniquelmrks];
Imrks = new double [uniquelmrks,?2];
eximrks = new double [uniquelmrks,2];

for (int i=0; i<uniquelmrks; i++)

matched(i] = true ;
id[i] = uniqgueLandmarksii].id;
ranges[i] = uniqueLandmarks[i].range;

bearings[i] = uniqueLandmarks[i].bearing;

Imrks[i,0] = landmarkDB[uniqueLandmarksi].id].
Imrks[i,1] = landmarkDB[uniqueLandmarksi].id].

exlmrks]i,0] = uniqueLandmarks]i].pos[0];

exlmrks]i,1] = uniqueLandmarks][i].pos[1];

pos|O];
pos[1];

dmarksl[j];

123

return 0;

public int AddToDB(landmark Im)

{
if (DBSize+1 < landmarkDB.Length)

[ffor(int i=0; i<DBSize+1; i++)

1K

/lif(((landmark)landmarkDBJi]).id = i)//if(((landm

((landmark)landmarkDBJi]).life <= 0)

1K
((landmark)landmarkDB[DBSize]).pos[0] = Im.pos[
((landmark)landmarkDB[DBSize]).pos[1] = Im.pos[
((landmark)landmarkDB[DBSize]).life = LIFE;
((landmark)landmarkDB[DBSize]).id = DBSize;

((landmark)landmarkDB[DBSize]).totalTimesObserv

seen landmark
((landmark)landmarkDB[DBSize]).bearing = Im.bea
((landmark)landmarkDB[DBSize]).range = Im.range
((landmark)landmarkDB[DBSize]).a = Im.a;
((landmark)landmarkDB[DBSize]).b= Im.b;
DBSize++;

ark)landmarkDBJi]).id == -1 ||

0]; /Iset landmark coordinates
1]; /Iset landmark coordinates
/Iset landmark life counter
/Iset landmark id
ed=1; /linitialise number of times we've
ring; //setlast bearing was seen at
; Ilset last range was seen at
/Istore landmarks wall equation

/Istore landmarks wall equation

124

return (DBSize-1);

return -1;

public int GetDBSize()

{
return DBSize;
}
public landmark[] GetDB()
{
landmark(] temp = new landmark[DBSize];
for (int i=0;i<DBSize; i++)
{
temp[i] = landmarkDBJi];
}
return temp;
}

private double Distance(double x1, double yl, double x2, double y2)

{
return Math.Sqgrt(Math.Pow(x1-x2,2)+Math.Pow(y1-y2, 2));

125

private double Distance(landmark Im1, landmark Im2)

{
return Math.Sqgrt(Math.Pow(Im1.pos[0]-Im2.pos[0],2)+Math.P ow(Iml.pos[1]-Im2.pos[1], 2));

126

127

