COMP1511 - Programming
Fundamentals

— Term 1, 2019 - Lecture 18 S
Stream B




What did we cover on Tuesday?

Linked Lists

e A complete working implementation of Linked Lists
e Removal of nodes
e C(leaning our memory

Pokédex Assighment

e Some info about the structure and approach



What are we covering today?

Working with Multiple Files

e Using Header files and including them in a project
e Compiling a project with multiple files

Abstract Data Types

e The ability to present capabilities of atypeto us...
e Without exposing any of the inner workings



C Projects with Multiple Files

For readability and also to separate code by subject

e We've already seen #include
e We can also #include our own files!
e This allows us to join projects together

Reusable sub-projects

e We'll often make some code that we can use again
e If we make itin its own file, with its own interface, we can #include it in
our projects



Header Files and C (Implementation) Files

Two different files for different purposes
e Header and C files usually go together in pairs
Header *.h file

e Shows the capabilities of a code file
e Enough to use it without needing to understand what's in it

C Implementation *.c file

e (Contains the underlying implementation of the H file



Pokemon.h

In our Header File

o Typedef (Type Define) is a way of allowing us to create our own C Type out
of another Type

e Function Declarations with no definitions

e Comments that describe how the functions can be used
e No running code!



Pokemon.c

Implementation File

Has #includes, especially #include "pokemon.h" (joins the two files
together)

Implements the struct mentioned in the typedef from the header
Implements all the functions declared in the header

Implements some functions for use only inside this file

static marks functions as not being accessible outside the file itself
static functions are only used as helper functions for the code in this file



main.c and other Files

Our Entry Point into our code

e The main function is always what runs first

e For any code file (*.c) to use the functionality provided by another, it must
#include that file

e Inthe assignment, main.c uses #include "pokedex.h" to be able to access
your Pokedéx functionality



Compiling a Project with Multiple Files

How do we compile multi-file project?

We need to compile all *.c files that we will use

The *.c files will #include the necessary *.h files

Amongst the *.c files there should be exactly one main() function
The compiled program will run from the start of the main() function



Abstract Data Types

Types we can declare for a specific purpose

e We can name them
e We can fix particular ways of interacting with them
e This can protect data from being accessed the wrong way

We can hide the implementation

e \Whoever uses our code doesn't need to see how it was made!
e They only need to know how to use it



Typedef

Type Definition

We declare new Type that we're going to use

typedef <original Type> <new Type Name>

Allows us to use a simple name for a possibly complex structure

More importantly, hides the structure details from other parts of the code

typedef struct pokemon *Pokemon;

e We can use "Pokemon" as a type without knowing anything about the
struct underlying it



Typedef in a Header file

The Header file provides an interface to the functionality

We can put this in a header (*.h) file along with functions that use it
This allows someone to see a Type without knowing exactly what it is
The details go in the *.c file which is not included directly

We can also see the functions without knowing how they work

We are able to see the header and use the information
We hide the implementation that we don't need to know about



Break Time

Keeping track of your own code projects

e Using git is a really handy way to keep backups of
your work

e GitHub and BitBucket are two providers that will
give you free online repositories to store your code

e Graphical Interfaces are available for git (GitHub
Desktop and Sourcetree respectively)

e |t takes some time to get familiar with how these
work . .. but you can start practising now!




Let's build a Queue

What's a queue?

e You should be reasonably familiar with the concept

e Inthe human world, we sometimes line up for things

e New things join the back of the queue

e Whatever's been there the longest will be the first thing to leave the
queue
Add to the Remove
queue at oldest
this end element

first




Functionality

We're only concerned with how we'll use it, not what it's made of

e Our user will see a "queue" rather than an array or linked list
e We will start with a queue of integers
e We will provide access to certain functions:
o Create a Queue
Destroy a Queue
Add to the Queue
Remove from the Queue
Count how many things are in the queue

O O O O



A Header File for Queue

// queue type hides the struct that is is
// implemented as
typedef struct queueInternals *queue;

// functions to create and destroy queues
queue queueCreate (void) ;
void queueFree (queue q) ;

// Add and remove items from queues

// Removing the item returns the item for use
void queueAdd(queue q, int item);

int queueRemove (queue q) ;

// Check on the size of the queue
int queueSize (queue q);




What does our Header (not) Provide?

Standard Queue functions are available

We can join the end or take the element from the front of the queue
We are not given access to anything else inside the queue!

We cannot take more than one element

We aren't able to loop through the queue

The power of Abstract Data Types

e They stop us from accessing the data incorrectly!



Queue.c

Our *.c file is the implementation of the functionality

The Cfile is like the detail under the "headings" in the header
Each declaration in the header is like a title of what is implemented

Let's start with a linked list as the underlying data structure

A linked list makes sense because we can add to one end and remove
from the other

It also works because it can change length with no issues



The implementation behind a type definition

We can create a pair of structs

e ueuelnternals represents the whole queue
e queueNode is a single element of the list

// Queue internals holds a pointer to the start of a linked list
struct queuelInternals {

struct queueNode *head;

};

struct queueNode ({
struct queueNode *next;
int data;




Creation of a Queue

If we want our struct to be persistent, we'll allocate memory for it

We create our queue empty, so the pointer to the head is NULL

// Create an empty queue
queue queueCreate (void) {
queue newQueue = malloc(sizeof (struct queuelnternals)) ;

if (newQueue == NULL) ({
printf ("Could not allocate memory for a queue.\n");
exit(1l);

}
newQueue->head = NULL;
return newQueue;




Adding items to the queue

We add items to the end of the queue

e We need to find the tail end of the queue
e Then add an element at the end

Add to the
queue at

this end



Add Element at the end

First option for adding an element at the tail end

Loop through all the elements until the next pointer is NULL
Add something to the end, pointing the NULL pointer at the new node

Looping to find the end every time seems like a lot of extra work
What if we keep track of the last element in the list using our
queue_internals struct?



Keeping track of both ends

// Queue internals holds a pointer to the
// start and end of the linked list
struct queuelInternals {

struct queueNode *head;

struct queueNode *tail;

};

Tail

NULL Head




Adding to the tail

e Connect the new object to the current tail
e Move the tail pointer to the new last object
e We no longer need to loop through the whole queue to find the tail




Code for Adding

void queueAdd(queue q, int item) ({
struct queueNode *newNode = malloc(sizeof (struct queueNode)) ;
if (newNode == NULL) {
printf ("Could not allocate memory for a node.\n");
exit(1l);
}

newNode->data item;
newNode->next = NULL;

if (g->tail == NULL) {
// queue is empty
g->head = newNode;
g->tail = newNode;

} else {
g->tail->next = newNode;
g->tail = newNode;




Removing a Node

The only node that can be removed is the head (the oldest node)

Tail
NULL Head
Tail Head
NULL . Oldest

Object !

___________



Code for Removing

// Remove the head from the list and free the memory used
int queueRemove (queue q) {
if (g->head == NULL) {
printf ("Attempt to remove an element from an empty queue.\n");
exit(1l);
}
// Keep track of the old head
int returnData = g->head->data;
struct queueNode *remNode = g->head;

// move the queue to the new head and free the old
g->head = g->head->next;

free (remNode) ;

return returnData;




Testing Code in our Main.c

int main(void) {
printf ("Creating the Queue of Pokemon.\n");
queue pokeQueue = queueCreate() ;
int id = 1;
printf ("Pokemon ID %d joins the parade!\n", id);
queueAdd (pokeQueue, id);
id = 2;
printf ("Pokemon ID %d joins the parade!\n", id);
queueAdd (pokeQueue, id);
id = 3;
printf ("Pokemon ID %d joins the parade!\n", id);
queueAdd (pokeQueue, id);

printf ("Pokemon ID %d just walked past!\n", queueRemove (pokeQueue)) ;
printf ("Pokemon ID %d just walked past!\n", queueRemove (pokeQueue)) ;
printf ("Pokemon ID %d just walked past!\n", queueRemove (pokeQueue)) ;
return 0O;




Other Functionality

There are some functions in the header we haven't implemented

e Destroying and freeing the Queue

e We're still at risk of leaking memory because we're only freeing on
removal

e Display the Number of Elements

e This would be very handy because it would allow us to tell how many
elements we can remove before we risk errors

We'll finish these and look at more next week!



What did we cover today?

Multiple Files in a Project
e Organisation and Compilation
Abstract Data Types

Using multiple files to control how a type is used
Hiding the implementation

Providing a fixed interface

Our demo is a partly implemented Queue



