

UNSW Global, UNSW Sydney NSW 2052 Australia

T: +61 (2) 8936 2222 | E: enquiries@unswglobal.unsw.edu.au | W: unswglobal.unsw.edu.au/programs-courses/

UNSW Global Pty Limited (ABN 62 086 418 582) is a not-for-profit provider of education services and a wholly owned subsidiary of UNSW Sydney. UNSW Global delivers
English language programs under its CRICOS Provider Code 01020K | UNSW Global delivers Diploma and Foundation Studies programs under UNSW Sydney’s CRICOS
Provider Code 00098G | See UNSW Global CRICOS Course Codes at unswglobal.unsw.edu.au/esos Copyright © 2021 UNSW Global Pty Limited.

DPST1093 / CPTG1393

Software Engineering Fundamentals

STEM Diploma

Jan 2025

mailto:FS_Dip-AcademicServices@unswglobal.unsw.edu.au
https://www.unswglobal.unsw.edu.au/programs-courses/
https://aus01.safelinks.protection.outlook.com/?url=http%3A%2F%2Funswglobal.unsw.edu.au%2Fesos&data=04%7C01%7CV.Chau%40unswglobal.unsw.edu.au%7Ce5178bd8c7e644dfa69408d8bda98747%7C108b99206654462a9d3d7937b549cd6f%7C0%7C0%7C637467883101277112%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=kssy6lzHr4tLWAAvsCjzjgH79u0ruykZpgdWjl%2FJdPE%3D&reserved=0

Page 2

1. Staff
Position Name Email
Course Convenor &
Lecturer

Dr Harshana Randeni H.Randeni@unswcollege.edu.au

2. Course information
Units of credit (UOC): 6

Pre-requisite(s): DPST1091 / CPTG1391

Total course contact hours: 96

2.1 Course summary
This course teaches students about software engineering principles via exposure to the important
practice of building correct products in effectively functioning teams.

You will be exposed to agile software practices, team collaboration and effective communication
through implementing a group project based on agile software methodologies that requires you to
analyse, design, build and deploy a web-based application. This course provides essential background
for the teamwork and project management required in many later courses.

2.2 Course aims
This course aims to provide students with a strong foundation in the fundamental principles and
practices of software engineering that will prepare them for the advanced software engineering
workshops. As such, a broad range of key software engineering topics will be taught and reinforced
through a group project, that will enable students to apply the theoretical concepts acquired to solve a
practical software engineering problem. An agile software delivery style has been chosen for the
implementation of the group project, to make students familiar with modern agile development
methodologies.

2.3 Course learning outcomes (CLO)
At the successful completion of this course you (the student) should be able to:

1 Demonstrate effective use of applying software development to build full-stack end-user
applications.

2 Demonstrate effective use of static testing, dynamic testing, and user testing to validate and verify
software systems.

3 Understand key characteristics of a functioning team in terms of understanding professional
expectations, maintaining healthy relationships, and managing conflict.

4 Demonstrate an ability to analyse complex software systems in terms of their data model, state
model, and more.

Page 3

5 Understand the software engineering life cycle in the context of modern and iterative software
development practices in order to elicit requirements, design systems thoughtfully, and implement
software correctly.

6 Demonstrate an understanding of how to use version control, continuous integration, and
deployment tooling to sustainably integrate code from multiple parties.

2.4 Relationship between course and program learning outcomes
and assessments

Course
Learning
Outcome
(CLO)

Program Learning Outcome (PLO) Related Tasks & Assessment

CLO 1 Understanding of underpinnings (PLO1, PLO3, PLO7,
PLO11)

Major Group Project,
Labs

CLO 2 Understanding of specialist bodies of engineering
knowledge (PLO3, PLO7)

Major Group Project,
Labs

CLO 3 Understanding of specialist bodies of engineering
knowledge (PLO2, PLO5)

Major Group Project

CLO 4 Application of established engineering practice
(PLO1, PLO11)

Major Group Project

CLO 5 Conceptual understanding of computer
underpinnings (PLO3)

Major Group Project

CLO 6 Understanding of specialist bodies of engineering
knowledge (PLO5)

Major Group Project,
Labs

3. Strategies and approaches to learning
3.1 Learning and teaching activities

This course involves a number of teaching activities:

Lectures – 4 hours per week (weeks 1-6 and 8-12)

Lectures present theory and concepts, by way of case studies and practical examples. Lecture notes
will be provided in advance of each class. There will be 4 hours of timetabled face to face lectures
each week.

Page 4

TutLabs – 2 hours, 2 times per week (weeks 1-6 and 8-12)

We have combined tutorial lab classes for this course. The first combined tutorial lab each week
focuses on covering lecture topics and software project management tasks.

Software Project Management tasks will focus on Major Project delivery, progress reviews, team
meetings and tutor feedback.

The second combined tutorial lab each week will focus on lab questions and coding for the Major Project
as well as project code demonstrations when relevant.

Labs tasks are individual tasks where students build systems that illustrate the ideas covered in lectures.

To obtain a mark for a lab question you should submit it using GitLab.

You cannot obtain marks by e-mailing lab work to tutors.

During the lab, your tutor will give you guidance and can provide feedback on your approach to the
problem and on the style of your solution.

There are 15 assessable labs to submit throughout the course.

Each question is worth 1 mark. There are 15 marks attainable across the labs, but you only need to score
10 out of 15 to achieve the full 10% for the lab marking component. This means you can skip a couple
of lab questions throughout the term. Most of the lab exercises are designed to teach students the
relevant coding and development practises to solve the current or upcoming milestones of the Major
Project.

Major Project – split into 4 Milestones (labelled Iteration 0, 1, 2, 3)

A majority of the learning for this course is assessed via the Major Project. In total, it is worth 60% of the
total assessment for this course. This is a group-based activity but your individual contributions will also
be assessed both via the system (GitLab) and your tutor/lab demonstrator.

Typically, large software projects are broken down into smaller components with clearly defined goals
called milestones. These milestones are considered key progress markers for project completion. In this
course, we will take a similar approach by dividing the Major Project assessment into four key
milestones. Each of these milestones will be indicated by the completion of a particular iteration of the
project.

Iteration 0 (Milestone 1) will focus on getting started with teamwork, learning the basics of the git version
control system and developing an initial prototype. This iteration is associated with 3% of the total marks
for this course.

Iteration 1 (Milestone 2) will focus on basic functionality for the project and creating test cases. This
iteration is associated with 27% of the total marks for this course.

Iteration 2 (Milestone 3) will extend the basic functionality with new requirements. This will include the
implementation of a web server and additional test cases to check whether the new requirements have
been met. This iteration is associated with 30% of the total marks for this course.

Iteration 3 (Milestone 4) is the final project submission. Here you will adapt to a change in requirements,
write new test cases and prepare the project for deployment. This iteration is associated with 30% of the
total marks for this course.

Page 5

Online Forum (Teams)

An online forum on teams allows students to ask and answer questions on the tutorial, lab and
assignment exercises, and on lecture material.

3.2 Expectations of students
Students are expected to:

• attend all lectures, and ask questions

• attend all tutorials and actively participate in the discussions

• attend all lab classes and work diligently on the exercises

• participate in the group work for the major project – both in terms of software project
management practices as well as coding contributions

• On the course forum (Teams), students should:

• use relevant/meaningful message titles on all posts

• ask questions clearly and provide sufficient background information that the question can
be reasonably answered

• not post significant pieces of code, especially code for major project or individual project

Page 6

4. Course schedule and structure

This course consists of 8 hours of class contact hours per week. You are expected to take an
additional 5 hours outside classes to complete assessments, readings, and exam preparation.

Week Lectures Tutorial and Labs Assessment Related CLO

Week 1 Course Introduction,
JavaScript intro, Git intro

Welcome, C to JavaScript
conversion, Git intro

 1,5,6

Week 2 Packages, importing files,
dynamic verification

Arrays in JavaScript, Code
Review, Teamwork,
JavaScript +Git

Team formation and
Iteration 0 Released
and due

1,2,3

Week 3 Data interchange,
Continuous Integration,
Static verification

Package Management,
Testing Procedures

Iteration 1 released 2,4,5,6

Week 4 Linting, Advanced
Functions, HTTP Servers

Agile approach, Typing and
Typescript, Linting

Iteration 1 due,
Peer Review 01 due

2

Week 5 Persistence, Authorization
and Authentication,
Software Development
Lifecycle - Requirements

Intro to APIs, HTTP servers
– express server, http
tests, Swagger API
definitions, First class
functions

Iteration 2 Released

Iteration 1 demo

1,2,3,5,6

Week 6 SDLC – Use Cases and
User Stories, SDLC –
Validation, Conceptual
modelling, Code coverage

Conceptual modelling
using JSON / YAML, Code
Refactoring, Using Server
Routes

 3,4,6

Week 7

Week 8 SDLC – Maintainability,

SDLC – Design Complexity
Exception handling,
Deployment

Good Software, Code
Coverage, System
Modelling

Peer Review 02 due
Iteration 02 due

1,3,5,6

Week 9 Iteration 3 Focus Functional vs non-
Functional requirements,
User Stories and Use

Iteration 2 demo

Iteration 3 released

1,2,3,5,6

Page 7

Cases, Creating Server
Routes

Week
10

Iteration 3 Focus Complexity Analysis 2,4

Week
11

Full-Stack – Front end
development,
Full-Stack – Building a
Minimal Viable Product

Project completion focus 3,5,6

Week
12

 Course Review

Deployment

Iteration 03 due,
Iteration 03 demo,

Project Exhibition
Peer Review 03 due

1,3,5,6

5. Assessment

5.1 Assessment tasks

Assessment task Length Weight Due CLOs

Major Project (Milestone 1) 2 weeks 3% Week 3 1,2,3,4,
5,6

Major Project (Milestone 2) 3 weeks 27% Week 6 1,2,3,4,
5,6

Major Project (Milestone 3) 3 weeks 30% Week 9 1,2,3,4,
5,6

Major Project (Milestone 4) 3 Weeks 30% Week 12 1,2,3,4,
5,6

Labs Throughout Semester 10% Weekly 1,2,6

The Major Group Project is assessed on three factors. The primary factor is code correctness, the
second is code quality, the third is software project management practice. Code correctness is handled
by auto-marking. Code quality is hand marked by tutors. Software project management practice is
assessed throughout the course by tutors via tutor and lab participation, Iteration demos, code reviews
and hand marking of your assessment submissions.

Lab questions are auto-marked primarily on their correctness, lab tutors and demonstrators will also give
feedback on code quality for some lab questions.

Page 8

5.2 Submission of assessment tasks
All assessments for this course will be submitted via the GitLab system.

For lab tasks, given extended timeframes, there are not late submissions except for minor fixes.

As the Major Group project is group work, it is up to the team members to organise themselves and
distribute tasks. If a late submission occurs, the team members will be asked if they wish to have the
late submission or an earlier submission assessed. If a late submission is assessed, it will follow the
standard late penalty.

If a team member is not participating, the tutor should be alerted as early as possible and actions can
be taken address the situation.

If a team member can not participate due to misadventure, that team member should submit a special
consideration form and contact the lecturer as soon as possible – preferably well before the assessment
deadline. Extensions are normally not granted for group work projects, but contribution criteria can be
reassessed if there is a determination that you have been adversely affected by your situation.

5.3 Feedback on assessment

Lab questions will be auto-marked and a score provided. You may discuss the outcome with your tutor
if you have any questions.

The Major Group Project will be auto-marked after the submission deadline and annotated with
comments by the tutor. There will also be demo sessions where your tutor will assess your contribution
and software project management practices. You can discuss the tutor’s comments in a lab class after
you have received the feedback.

Page 9

6. Readings and Resources
There is no single textbook that covers all the material in this course at the right level of detail and is
using the same technology base as we are. The lectures should provide sufficient detail to introduce
topics – upon which you will do further in-depth study in the tutorials, labs and group projects. For
some lectures, further reading material may be given to students who wish to gain a deeper
understanding.

7. Use of AI Tools
This subject prohibits the user of AI tools for submissions. This means that any code or documents
that a student submits is assumed to be their own work.

It is understandable that students may use AI tools to assist in the explanation of code and for
potentially checking code for bugs. This use is consistent with industry practices, so it is permitted as
long as the final submission of work is the students own work.

The authenticity of your code submissions are verified during the demos you do after the end of each
Major Project Iteration 1,2,3. If you can not explain your code, or if it suspected of being AI generated,
you may receive an adjustment to your marks and a warning. If it happens more than once or it
happens in a substantial way, then you will be referred to the UNSW College Academic Intregity unit.

	1. Staff
	2. Course information
	2.1 Course summary
	2.2 Course aims
	2.3 Course learning outcomes (CLO)
	2.4 Relationship between course and program learning outcomes and assessments

	3. Strategies and approaches to learning
	3.1 Learning and teaching activities
	Lectures – 4 hours per week (weeks 1-6 and 8-12)
	TutLabs – 2 hours, 2 times per week (weeks 1-6 and 8-12)
	Major Project – split into 4 Milestones (labelled Iteration 0, 1, 2, 3)
	Online Forum (Teams)

	3.2 Expectations of students

	4. Course schedule and structure
	5. Assessment
	5.1 Assessment tasks
	5.2 Submission of assessment tasks
	5.3 Feedback on assessment

	1.
	2.
	3.
	4.
	5.
	6. Readings and Resources
	7. Use of AI Tools

