13. Review

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2016

Contents

1	Review	1
	1.1 Upper Bounds	1
	1.2 Lower Bounds	3
2	Research in Parameterized and Exact Computation	3

1 Review

1.1 Upper Bounds

Dynamic Programming across Subsets

- very general technique
- uses solutions of subproblems
- typically stored in a table of exponential size

Analysis of Branching Algorithm

Lemma 1 (Measure Analysis Lemma). Let

- A be a branching algorithm
- $c \ge 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(|I|^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and} \tag{1}$$

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$
(2)

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

Inclusion-Exclusion

Theorem 2 (IE-theorem – intersection version). Let $U = A_0$ be a finite set, and let $A_1, \ldots, A_k \subseteq U$.

$$\left| \bigcap_{i \in \{1, \dots, k\}} A_i \right| = \sum_{J \subseteq \{1, \dots, k\}} (-1)^{|J|} \left| \bigcap_{i \in J} \overline{A_i} \right|,$$

where $\overline{A_i} = U \setminus A_i$ and $\bigcap_{i \in \emptyset} = U$.

Theorem 3. The number of covers with k sets and the number of ordered partitions with k sets of a set system (V, H) can be computed in polynomial space and

- 1. $O^*(2^n|H|)$ time if H can be enumerated in $O^*(|H|)$ time and poly space,
- 2. $O^*(3^n)$ time if membership in H can be decided in polynomial time, and
- 3. $\sum_{j=0}^{n} {n \choose j} T_H(j)$ time if there is a $T_H(j)$ time poly space algorithm to count for any $W \subseteq V$ with |W| = j the number of sets $S \in H$ st. $S \cap W = \emptyset$.

Main Complexity Classes

P: class of problems that can be solved in time $n^{O(1)}$ FPT: class of problems that can be solved in time $f(k) \cdot n^{O(1)}$

W[·]: parameterized intractability classes

XP: class of problems that can be solved in time $f(k) \cdot n^{g(k)}$

$$\mathbf{P} \subseteq \mathbf{FPT} \subseteq \mathbf{W}[1] \subseteq \mathbf{W}[2] \cdots \subseteq \mathbf{W}[P] \subseteq \mathbf{XP}$$

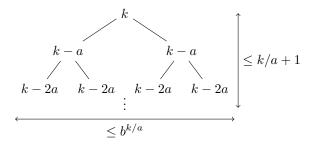
Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in time $2^{o(n)}$.

Kernelization: definition

Definition 4. A kernelization for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Search trees

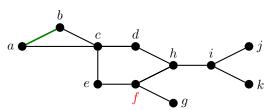
Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k/a} \cdot (k/a+1)$.



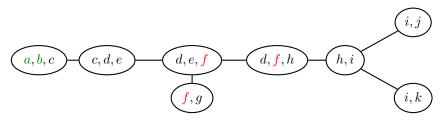
If k/a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.

Tree decompositions (by example)

• A graph G



• A tree decomposition of G



Conditions: covering and connectedness.

Iterative Compression

For a minimization problem:

- Compression step: Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances
- Often, we can get a solution of size k + 1 with only a polynomial overhead

1.2 Lower Bounds

Reductions

We have seen several reductions, which, for an instance (I, k) of a problem Π , produce an equivalent instance I' of a problem Π' .

	time	parameter	special features	used for
kernelization	poly	$k' \le g(k)$	$ I' \le g(k)$	g(k)-kernels
			$\Pi = \Pi'$	
parameterized reduction	\mathbf{FPT}	$k' \leq g(k)$		W[]-hardness
OR-composition	poly	$k' \leq \operatorname{poly}(k)$	$\Pi = OR(\Pi')$	Kernel LBs
AND-composition	poly	$k' \leq \operatorname{poly}(k)$	$\Pi = \text{AND}(\Pi')$	Kernel LBs
polynomial parameter	poly	$k' \leq \operatorname{poly}(k)$		Kernel LBs
transformation				(S)ETH LBs
SubExponential Reduction	$\operatorname{subexp}(k)$	$k' \in O(k)$	Turing reduction	ETH LBs
Family			$ I' = I ^{O(1)}$	

2 Research in Parameterized and Exact Computation

News

- Recently solved open problems from [Downey Fellows, 2013]
 - BICLIQUE is W[1]-hard [Lin, SODA 2015]
- research focii
 - enumeration algorithms and combinatorial bounds
 - randomized algorithms
 - backdoors
 - treewidth: computation, bounds on the treewidth of grid or planar subgraphs / minors
 - bidimensionality
 - bottom-up: improving the quality of subroutines of heuristics
 - (S)ETH widely used now, also for poly-time lower bounds
 - quests for multivariate algorithms, lower bounds for Turing kernels
 - FPT-approximation algorithms

Resources

- FPT wiki: http://fpt.wikidot.com
- FPT newsletter: http://fpt.wikidot.com/fpt-news:the-parameterized-complexity-newsletter
- Blog: http://fptnews.org
- cstheory stackexchange: http://cstheory.stackexchange.com
- FPT school 2014: http://fptschool.mimuw.edu.pl

Advertisements

- Data61 5th Optimisation Summer School, 8-13 Jan 2017 in Kioloa
- UNSW Algorithms group

Please fill in the myExperience course survey if you have not done so yet.