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1 Vertex Cover

A wvertex cover of a graph G = (V, E) is a subset of vertices S C V such that for each edge {u,v} € E, we have
u€ SorveS.

VERTEX COVER
Input: A graph G = (V, E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size at most k7
a
b c
d e

Exercise 1




Is this a YEs-instance for VERTEX COVER? (Is there S C V with |S| < 4, such that V uwv € E, u € S or v € 57)

Exercise 2

1.1 Simplification rules

(Degree-0)
If Jv € V such that dg(v) = 0, then set G < G — v.

Proving correctness. A simplification rule is sound if for any instance, it produces an equivalent instance.
Two instances I, I’ are equivalent if they are both YEs-instances or they are both No-instances.

Lemma 1. (Degree-0) is sound.

Proof. First, suppose (G — v, k) is a YEs-instance. Let S be a vertex cover for G — v of size at most k. Then, S is
also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a YES-instance.

Now, suppose (G, k) is a YEs-instance. For the sake of contradiction, assume (G — v, k) is a No-instance. Let
S be a vertex cover for G of size at most k. But then, S\ {v} is a vertex cover of size at most k for G — v; a
contradiction. O

(Degree-1)
If Jv € V such that dg(v) = 1, then set G < G — Ng[v] and k + k — 1.

Lemma 2. (Degree-1) is sound.

Proof. Let u be the neighbor of v in G. Thus, Ng[v] = {u,v}.

If S is a vertex cover of G of size at most k, then S\ {u, v} is a vertex cover of G — Ng[v] of size at most k — 1,
because u € S or v € S. If S’ is a vertex cover of G — N¢[v] of size at most k — 1, then S’ U {u} is a vertex cover
of G of size at most k, since all edges that are in G but not in G — Ng[v] are incident to v. O

(Large Degree)

If Jv € V such that dg(v) > k, then set G <~ G —v and k + k — 1.

Lemma 3. (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If v ¢ S, then Ng(v) C S, contradicting that |S| < k. O

(Number of Edges)
If dg(v) < k for each v € V and |E| > k? then return No



Lemma 4. (Number of Edges) is sound.

Proof. Assume dg(v) < k for each v € V and |E| > k%. Suppose S C V, |S| < k, is a vertex cover of G. We have
that S covers at most k% edges. However, |E| > k* + 1. Thus, S is not a vertex cover of G. O

1.2 Preprocessing algorithm

VC-preprocess
Input: A graph G and an integer k.
Output: A graph G’ and an integer k' such that G has a vertex cover of size at most k if and only if G’ has
a vertex cover of size at most k'.
G+ G
K+ k
repeat
| Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G', k')
until no simplification rule applies
return (G', k')

Effectiveness of preprocessing algorithms

e How effective is VC-preprocess?

e We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

e Say that a preprocessing algorithm for a problem II is nice if it runs in polynomial time and for each instance
for II, it returns an instance for II that is strictly smaller.

e — executing it a linear number of times reduces the instance to a single bit

e — such an algorithm would solve II in polynomial time

For NP-hard problems this is not possible unless P = NP

We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms
e We will measure the effectiveness in terms of the parameter

e How large is the resulting instance in terms of the parameter?

Effectiveness of VC-preprocess

Lemma 5. For any instance (G, k) for VERTEX COVER, VC-preprocess produces an equivalent instance (G', k') of
size O(k?).

Proof. Since all simplification rules are sound, (G = (V, E), k) and (G’ = (V', E’), k') are equivalent. By (Number
of Edges), |E’| < (k')? < k2. By (Degree-0) and (Degree-1), each vertex in V’ has degree at least 2 in G’. Since
> vev dar(v) = 2|E'| < 2k?, this implies that [V’| < k2. Thus, [V'| + |E'| € O(k?). O

2 Kernelization algorithms

Kernelization: definition

Definition 6. A kernelization for a parameterized problem II is a polynomial time algorithm, which, for any
instance I of II with parameter k, produces an equivalent instance I’ of IT with parameter k’ such that |I'| < f(k)
and k' < f(k) for a computable function f. We refer to the function f as the size of the kernel.

Note: We do not formally require that &’ < k, but this will be the case for many kernelizations.



VC-preprocess is a quadratic kernelization
Theorem 7. VC-preprocess is a O(k?) kernelization for VERTEX COVER.

Can we obtain a kernel with fewer vertices?

3 A smaller kernel for Vertex Cover

Integer Linear Program for Vertex Cover

The VERTEX COVER problem can be written as an Integer Linear Program (ILP). For an instance (G = (V, E), k)

for VERTEX COVER with V' = {vy,...,v,}, create a variable x; for each vertex v;, 1 <i <mn. Let X = {z1,...,2,}.
Minimizez T;
ILPyc(G)= i=1
ri+a; >1 for each {v;,v;} € E
z; € {0,1} foreach i € {1,...,n}

Then, (G, k) is a YEs-instance iff the objective value of ILPyc(G) is at most k.

LP relaxation for Vertex Cover

n
Minimizez T;
i=1
T + T >1

LPvc(G)=

for each {v;,v;} € E
for each ¢ € {1,...,n}

Note: the value of an optimal solution for the Linear Program LPy¢(G) is at most the value of an optimal solution

for ILPyc(G)

Properties of LP optimal solution

e Let a: X — R>¢ be an optimal solution for LPyc(G). Let

V.= {'Ui
V1/2 = {Ui
V+ = {Ui

Lemma 8. For each i,1 < i <n, we have that o(x;) < 1.

Lemma 9. V_ is an independent set.

Lemma 10. Ng(V_) =V,.

sa(x;) < 1/2}
sa(x;) =1/2}
safz) > 1/2}

Lemma 11. For each S C Vi we have that |S| < |[Ng(S)NV_|.

Proof. For the sake of contradiction, suppose there is a set S C V4 such that |S| > |[Ng(S) N V_|. Let €

min,,es{a(zr;) —1/2} and o/ : X — Rxg s.t.

a(z;) ifv; ¢ SU(Ng(S)NV2)
(@) =R alr;)) —e ifv;, €8
a(z;)+e ifv; € Na(S)NV_

Note that o' is an improved solution for LPvc(G), contradicting that « is optimal.



Theorem 12 (Hall’s marriage theorem). A bipartite graph G = (V W U, E) has a matching saturating S C V if
and only if for every subset W C S we have |W| < |[Ng(W)]. E|

Consider the bipartite graph B = (V_ WV ,{{u,v} €e E:ue V_,v e V,}).
Lemma 13. There exists a matching M in B of size |V|.

Proof. The lemma follows from the previous lemma and Hall’'s marriage theorem. O

Crown Decomposition: Definition

Definition 14 (Crown Decomposition). A crown decomposition (C, H, B) of a graph G = (V, E) is a partition of
V into sets C, H, and B such that

e the crown C is a non-empty independent set,
e the head H = Ng(C),

e the body B=V \ (CUH), and

e there is a matching of size |H| in G[H U C].

By the previous lemmas, we obtain a crown decomposition (V_,V,,V;,9) of G if V_ # 0.

Crown Decomposition: Examples

e f g e
b d b d
a a
crown decomposition has no crown decomposition

({a,e,g},{b,d, f},{c})

Using the crown decomposition

Lemma 15. Suppose that G = (V, E) has a crown decomposition (C,H, B). Then,
ve(G) <k < we(G[B]) <k-|H|,
where ve(G) denotes the size of the smallest vertex cover of G.

Proof. (=): Let S be a vertex cover of G with |S| < k. Since S contains at least one vertex for each edge of a
matching, |SN (C U H)| > |H|. Therefore, SN B is a vertex cover for G[B] of size at most k — |H]|.

(<): Let S be a vertex cover of G[B] with |S| < k — |H|. Then, SU H is a vertex cover of G of size at most k,
since each edge that is in G but not in G’ is incident to a vertex in H. O

Nemhauser-Trotter

Corollary 16 ([Nemhauser, Trotter, 1974]). There exists a smallest vertex cover S of G such that SNV_ =0 and
Vi Cs.

LA matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of
vertices S if each vertex in S is an end point of an edge in M.




Crown reduction

(Crown Reduction)
If solving LPy ¢ (G) gives an optimal solution with V_ # (), then return (G — (V_ U VL), k — |V4]).

(Number of Vertices)
If solving LPy ¢ (G) gives an optimal solution with V_ = @ and |V| > 2k, then return No.

Lemma 17. (Crown Reduction) and (Number of Vertices) are sound.

Proof. (Crown Reduction) is sound by previous Lemmas. Let o be an optimal solution for LPy«(G) and suppose
V_ = (). The value of this solution is at least |V|/2. Thus, the value of an optimal solution for ILPyc(G) is at least
[V|/2. Since G has no vertex cover of size less than |V|/2, we have a No-instance if k < |V]/2. O
Linear vertex-kernel for Vertex Cover

Theorem 18. VERTEX COVER has a kernel with 2k vertices and O(k?) edges.

This is the smallest known kernel for VERTEX COVER. See http://fpt.wikidot.com/fpt-races|for the current
smallest kernels for various problems.

4 More on Crown Decompositions

Crown Lemma

Lemma 19 (Crown Lemma). Let G = (V, E) be a graph without isolated vertices and with |V| > 3k + 1. There is
a polynomial time algorithm that either

e finds a matching of size k+ 1 in G, or
e finds a crown decomposition of G.
To prove the lemma, we need Ko6nig’s Theorem

Theorem 20 ([Kénig, 1916]). In every bipartite graph the size of a mazximum matching is equal to the size of a
minimum vertex cover.

Proof of the Crown Lemma. Compute a maximum matching M of G. If |M| > k + 1, we are done. Note that
I:=V\V(M) is an independent set with |V|—|V(M)| > k+1 vertices. Consider the bipartite graph B formed by
edges with one endpoint in V(M) and the other in /. Compute a minimum vertex cover X and a maximum matching
M’ of B. We know: |X|=|M'| <|M|<k. Hence, X NV(M)#0. Let M*={eec M :en(X NV(M)) # 0}.
We obtain a crown decomposition with

o crown C=V(M*)NI
e head H=XNV(M)=XNV(M*), and
e body B=V\ (CUH).

As an exercise, verify that (C, H, B) is indeed a crown decomposition. O

5 Kernels and Fixed-parameter tractability

Theorem 21. Let IT be a decidable parameterized problem. 11 has a kernelization algorithm < 1I is FPT.

Proof. (=): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm
on the resulting instance.

(<): Let A be an FPT algorithm for IT with running time O(f(k)n®). If f(k) < n, then A has running time
O(n°t1). In this case, the kernelization algorithm runs A and returns a trivial YES- or No-instance depending on
the answer of A. Otherwise, f(k) > n. In this case, the kernelization algorithm outputs the input instance. O


http://fpt.wikidot.com/fpt-races

After computing a kernel ...

e ... we can use any algorithm to compute an actual solution.

e Brute-force, faster exponential-time algorithms, parameterized algorithms, often also approximation algo-
rithms

Kernels

e A parameterized problem may not have a kernelization algorithm

— Example, COLORINGE| parameterized by k has no kernelization algorithm unless P = NP.

— A kernelization would lead to a polynomial time algorithm for the NP-complete 3-COLORING problem
e Kernelization algorithms lead to FPT algorithms ...

e ... FPT algorithms lead to kernels

6 Further Reading

e Chapter 2, Kernelization in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx,
Marcin Pilipczuk, MichalPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

e Chapter 4, Kernelization in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

e Chapter 7, Data Reduction and Problem Kernels in Rolf Niedermeier. Invitation to Fixed Parameter Algo-
rithms. Oxford University Press, 2006.

e Chapter 9, Kernelization and Linear Programming Techniques in Jorg Flum and Martin Grohe. Parameterized
Complexity Theory. Springer, 2006.

2Can one color the vertices of an input graph G with k colors such that no two adjacent vertices receive the same color?
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