Exercise sheet 8
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. Recall that a k-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

```
COLORING
    Input: Graph G, integer k
    Question: Does G have a k-coloring?
```

- Suppose A is an algorithm solving Coloring in $O(f(n))$ time, $n=|V|$, where f is non-decreasing. Design a $O^{*}(f(n))$ time algorithm B, which, for an input graph G, finds a coloring of G with a smallest number of colors.

Exercise 2. Recall that a graph $G=(V, E)$ is bipartite if G has a 2-coloring. A matching in a graph $G=(V, E)$ is a set of edges $M \subseteq E$ such that no two edges of M have an end-point in common. The matching M in G is perfect if every vertex of G is contained in an edge of M.

```
#Bipartite Perfect Matchings
    Input: Bipartite graph G = (V,E)
    Output: The number of perfect matchings in G
```

1. Design an algorithm for \#Bipartite Perfect Matchings with running time $O^{*}\left(\left(\frac{n}{2}\right)!\right)$, where $n=|V|$.
2. Design a polynomial-space $O^{*}\left(2^{n / 2}\right)$-time inclusion-exclusion algorithm for \#Bipartite Perfect MatchINGS.
