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@ Overview
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Resources

@ Chapter 34, NP-Completeness, in the textbook: Thomas H. Cormen,
Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

o Slides: http://www.cse.unsw.edu.au/~sergeg/np.pdf
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Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant ¢ € N such that the algorithm has (worst-case)
running-time O(n°), where n is the size of the input.
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Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant ¢ € N such that the algorithm has (worst-case)
running-time O(n°), where n is the size of the input.

20

Polynomial: n; n%log,n; n®;, n
Super-polynomial: plog2n. oV 1 (017 27 nl
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Time complexities

n= 10 100 1,000 10,000 100,000 1,000, 000
n <1lms <lIms <Ims <1lms <1ms <1lms
n?logon <1 ms <lms <1ms 13ms 1.66 sec 3.3 min
n3 <1ms <1ms 10ms 10sec 2.78 hours 3.86 months
n?0 31.7years >1U >1U >1U >1U >1U
V7 <lms <1lms 33ms >1U >1U >1U
1.001™ <1ms <lms <1Ims <1lms >1U >1U
2m <1ms >1U >1U >1U >1U >1U
n! <1ms >1U >1U >1U >1U >1U

Table: Processing speed for various time complexities, assuming 10*! instructions are
processed per second (Intel Core i7). Here, U= 13.798 - 10? years.
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Tractable problems

Central Question
Which computational problems have polynomial-time algorithms?
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Million-dollar question

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

@ A polynomial-time algorithm for one NP-complete problem would imply
polynomial-time algorithms for all problems in NP.

Gerhard Woeginger's P vs NP page:
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm
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Polynomial vs. NP-complete

L] L]
Polynomial NP-complete
I — I ——

@ Shortest Path: Given a graph G, @ Longest Path: Given a graph G

two vertices a and b of GG, and an
integer k, does G have a simple
a—b-path of length at most k7

@ Euler Tour: Given a graph G, does
G have a cycle that traverses each
edge of (G exactly once?

@ 2-CNF SAT: Given a propositional
formula I in 2-CNF, is I
satisfiable?

A k-CNF formula is a conjunction
(AND) of clauses, and each clause
is a disjunction (OR) of at most k
literals, which are negated or
unnegated Boolean variables.
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and an integer k, does GG have a
simple path of length at least k7?

Hamiltonian Cycle: Given a graph
G, does (G have a simple cycle
that visits each vertex of G7

3-CNF SAT: Given a propositional
formula I in 3-CNF, is F
satisfiable?

Example:
(xV—=yVz)A(—zVz)A(-yV-z).
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Overview

What's next?
o Formally define P, NP, and NP-complete (NPC)
@ New skill: show that a problem is NP-complete

@ Briefly: what to do when confronted with an NP-complete problem?
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Outline

© Turing Machines, P, and NP
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Decision problems and Encodings

<Name of Decision Problem>
Input: <What constitutes an instance>
Question:  <Yes/No question>
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Decision problems and Encodings

<Name of Decision Problem>

Input: <What constitutes an instance>
Question:  <Yes/No question>

We want to know which decision problems can be solved in polynomial time —
polynomial in the size of the input n.

@ Assume a “reasonable” encoding of the input

@ Many encodings are polynomial-time equivalent; i.e., one encoding can be
computed from another in polynomial time.

@ Important exception: unary versus binary encoding of integers.
o An integer = takes [log, ] bits in binary and = = 2!°52% bits in unary.
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Exercise on Decision Problems

Cluster into groups of 4-5 students. Answer the following questions.
Let f : N — N be a non-decreasing function.
@ Given an O(f(n))-time algorithm for Maximum Independent Set, design an
algorithm for Independent Set with running time O(f(n) - poly(n)).
@ Given an O(f(n))-time algorithm for Independent Set, design an algorithm
for Maximum Independent Set with running time O(f(n) - poly(n)).

Independent Set

Graph G, integer k

Does GG have an indepen-
dent set of size at least k7

Input:
Question:

Maximum Independent Set

Input: Graph G
Output: A largest independent set
of G

Def. An independent set of a graph

G = (V,E) is a subset of vertices S C V
such that no two vertices of S are
adjacent in G.
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Formal-language framework

We can view decision problems as languages.
@ Alphabet X: finite set of symbols. W.l.o.g., ¥ = {0,1}
@ Language L over X: set of strings made with symbols from : L C ¥*
@ Fix an encoding of instances of a decision problem II into X
@ Define the language L C ¥ such that

x € L1 < x is a Yes-instance for I1
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Non-deterministic Turing Machine (NTM)

@ input word x € X* placed on an
infinite tape (memory)

@ read-write head initially placed on
the first symbol of x

@ computation step: if the machine is
in state s and reads a, it can move
into state s, writing b, and moving
the head into direction D € {L, R}
if ((s,a),(s’,b,D)) €.

JEETEIE]
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Q@: finite, non-empty set of states
I': finite, non-empty set of tape
symbols

_ €T blank symbol (the only
symbol allowed to occur on the tape
infinitely often)

Y C T\ {b}: set of input symbols
qo € @Q: start state

A C Q: set of accepting (final)
states

JC(Q\AXT)x (Q@xITx{L,R}):
transition relation, where L stands

for a move to the left and R for a
move to the right.
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Accepted Language

Definition 1

A NTM accepts a word = € ¥* if there exists a sequence of computation steps
starting in the start state and ending in an accept state.

Definition 2
The language accepted by an NTM is the set of words it accepts.
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Discussion: Non-deterministic Turing Machines

In groups, discuss whether you think that NTMs are realistic computation models
@ Is this a good representation of how our computing devices work?
@ What is different?
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The LEGO Turing Machine
https://www.youtube.com/watch?v=cYw2ewo06c4
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https://www.youtube.com/watch?v=cYw2ewoO6c4

Accept and Decide in polynomial time

A language L is accepted in polynomial time by an NTM M if

@ L is accepted by M, and

@ there is a constant & such that for any word = € L, the NTM M accepts x in
O(|x|¥) computation steps.

Definition 4
A language L is decided in polynomial time by an NTM M if

| \

@ there is a constant & such that for any word = € L, the NTM M accepts x in
O(|x|¥) computation steps, and

@ there is a constant £’ such that for any word 2 € ¥* \ L, on input 2 the NTM
M halts in a non-accepting state (Q \ A) in O(|z|*") computation steps.

W
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Deterministic Turing Machine

Definition 5

A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine
where the transition relation contains at most one tuple ((s,a), (-, -)) for each
se@Q\AandaeT.

The transition relation § can be viewed as a function

0:Q\AxT —QxT x{L,R}.

= For a given input word = € ¥, there is exactly one sequence of computation
steps starting in the start state.
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Exercise: DTM

In groups:

Design a DTM (Q,I", ¥ = {0, 1}, qo, 4, ) that accepts palindromes.
A palindrome is a word that is equal to its reverse; e.g., 011010110.
Recall:

@ (: finite, non-empty set of states
o [': finite, non-empty set of tape symbols

e _c I': blank symbol (the only symbol allowed to occur on the tape infinitely
often)

¥ C T\ {b}: set of input symbols
qo € Q: start state
A C @: set of accepting (final) states

0:Q\AxT — @ xT x{L,R}: transition function, where L stands for a
move to the left and R for a move to the right.

Serge Gaspers (UNSW) COMP3121: Intractability



DTM equivalents

Many computational models are polynomial-time equivalent to DTMs:
@ Random Access Machine (RAM, used for algorithms in the textbook)
@ variants of Turing machines (multiple tapes, infinite only in one direction, ...)
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Definition 6 (P)
P={L C X*: thereisa DTM accepting L in polynomial time}

Definition 7 (NP)
NP = {L C ¥* : there is a NTM accepting L in polynomial time}

Definition 8 (coNP)
NP = {L C ¥*: ¥*\ L € NP}
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Theorem 9

P={L C¥*: thereis a DTM deciding L in polynomial time}
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Theorem 9
P={L CX*: thereisa DTM deciding L in polynomial time}

Proof sketch.

Need to show:

if L is accepted by a DTM M in polynomial time, then there is a DTM that

decides L in polynomial time.

Idea: design a DTM M’ that simulates M for ¢ - n* steps, where ¢ - n* is the
running time of M.

(Note that this proof is nonconstructive: we might not know the running time of

M) O

4
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NP and certificates

Non-deterministic choices

A NTM for an NP-language L makes a polynomial number of non-deterministic
choices on input = € L.

We can encode these non-deterministic choices into a certificate ¢, which is a
polynomial-length word.

Now, there exists a DTM, which, given x and ¢, verifies that = € L.

Thus, L € NP iff for each = € L there exists a polynomial-length certificate ¢ and
a DTM M such that given x and a, M can verify in polynomial time that = € L.
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CNF-SAT is in NP

@ A CNF formula is a propositional formula in conjunctive normal form: a
conjunction (AND) of clauses; each clause is a disjunction (OR) of literals;
each literal is a negated or unnegated Boolean variable.

@ An assignment « : var(F) — {0, 1} satisfies a clause C' if it sets a literal of C'
to true, and it satisfies F' if it satisfies all clauses in F.

CNF-SAT
Input: CNF formula F
Question:  Does F' have a satisfying assignment?

Example: (zV =y V z) A (mxVz)A(myV —z).

CNF-SAT € NP.

Exercise.
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© Reductions and NP-completeness
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Polynomial-time reduction

Definition 11

A language L; is polynomial-time reducible to a language Lo, written Ly <p Lo,
if there exists a polynomial-time computable function f : ¥* — ¥* such that for
all x € X%,

$€L1<:>f($) € Lo.

A polynomial time algorithm computing f is a reduction algorithm.
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New polynomial-time algorithms via reductions

If Ly, Ly € ¥* are languages such that Ly <p Lo, then Lo € P implies L, € P. I
Exercise. ] I
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NP-completeness

Definition 13 (NP-hard)

A language L C ¥* is NP-hard if

L' <p L for every L' € NP.

Definition 14 (NP-complete)

A language L C ¥* is NP-complete (in NPC) if
Q@ L NP, and
@ L is NP-hard.

Serge Gaspers (UNSW) COMP3121: Intractability



A first NP-complete problem

CNF-SAT is NP-complete. I

Proved by encoding NTMs into SAT and then CNF-SAT (Cook-Levin 1971/1973
and Karp 1972).
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Proving NP-completeness

If L is a language such that L' <p L for some L' € NPC, then L is NP-hard.
If, in addition, L € NP, then L € NPC.
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Proving NP-completeness

If L is a language such that L' <p L for some L' € NPC, then L is NP-hard.
If, in addition, L € NP, then L € NPC.

Proof.

For all L € NP, we have L/ <p L' <p L.
By transitivity, we have L” <p L.
Thus, L is NP-hard. O

| A
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Proving NP-completeness (2)

Method to prove that a language L is NP-complete:
@ Prove L € NP
@ Prove L is NP-hard.

o Select a known NP-complete language L'.

o Describe an algorithm that computes a function f mapping every instance
x € X" of L' to an instance f(z) of L.

o Provethat x € L' & f(z) € L for all z € &*.

o Prove that the algorithm computing f runs in polynomial time.
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@ NP-complete problems
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3-CNF SAT is NP-hard
3-CNF SAT is NP-complete. \
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3-CNF SAT is NP-hard
3-CNF SAT is NP-complete. \

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
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3-CNF SAT is NP-hard
3-CNF SAT is NP-complete. \

Proof.
3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from

CNF-SAT.

COMP3121: Intractability
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3-CNF SAT is NP-hard
3-CNF SAT is NP-complete. \

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.

Let ' be a CNF formula. The reduction algorithm constructs a 3-CNF formula F’
as follows. For each clause C' in F"

o If C' has at most 3 literals, then copy C into F”.
@ Otherwise, denote C' = ({1 VU5V -+ -V 4).
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3-CNF SAT is NP-hard

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.

Let ' be a CNF formula. The reduction algorithm constructs a 3-CNF formula F’
as follows. For each clause C' in F"

o If C' has at most 3 literals, then copy C into F”.

o Otherwise, denote C' = (¢; V¢35V -+ -\ ;). Create k — 3 new variables
Yi,---,Yk—3, and add the clauses
(1 VLV y), (Y1 VI Vy2), (Y2 VLV ys), ..., (k=3 VL1 V Ly).
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3-CNF SAT is NP-hard
3-CNF SAT is NP-complete. \

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.
Let ' be a CNF formula. The reduction algorithm constructs a 3-CNF formula F’
as follows. For each clause C' in F:
o If C' has at most 3 literals, then copy C into F”.
o Otherwise, denote C' = (¢; V¢35V -+ -\ ;). Create k — 3 new variables
Y1,-.-,Yk—3, and add the clauses
(Ve Vy), (myr VIV y2),(my2 VLV Y3),. . (Y3 V le—1 V Lg).
Show that F' is satisfiable < F” is satisfiable.
Show that F” can be computed in polynomial time (trivial; use a RAM). O
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Clique

A clique in a graph G = (V, E) is a subset of vertices S C V' such that every two
vertices of S are adjacent in G.

Clique

Input: Graph G, integer k
Question:  Does G have a clique of size k7?

Theorem 18
Clique is NP-complete.

Groupwork.
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Clique

A clique in a graph G = (V, E) is a subset of vertices S C V' such that every two
vertices of S are adjacent in G.

Clique

Input: Graph G, integer k
Question:  Does G have a clique of size k7?

Theorem 18
Clique is NP-complete.

Groupwork.
Hint: Reduce from 3-CNF SAT.
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o Clique is in NP
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(mxVyVz)A(zV-yV-z)A(xzVy)

o Clique is in NP

o Llet F=Ci ANCyA...Ck bea3-CNF
formula

o Construct a graph G that has a clique
of size k iff F' is satisfiable
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(mxVyVz)A(zV-yV-z)A(xzVy)
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Clique is in NP

Let ' =C; ANCy A ...C) be a 3-CNF
formula

Construct a graph G that has a clique
of size k iff F' is satisfiable

For each clause C,, = ({{ VvV --- VvV (7)),
1 <r <k, create w new vertices

r T
V], ..., 00
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(mxVyVz)A(zV-yV-z)A(xzVy)
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Clique is in NP

Let ' =C; ANCy A ...C) be a 3-CNF
formula

Construct a graph G that has a clique

of size k iff I is satisfiable

For each clause C,. = (¢] V-V (1),
1 <r <k, create w new vertices

V], ..., 00

Add an edge between v; and vj if

r#£s and
0t

where ——x = z.

Check correctness and polynomial
running time
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@ Correctness: I has a satisfying
assignment iff G has a clique of size k.

- T

(mzVyVz)A(xV-yV-z)A(xVy)
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@ Correctness: I has a satisfying
assignment iff G has a clique of size k.

@ (=): Let « be a sat. assignment for F'.
- T For each clause C., choose a literal ¢}
with «a(¢7) = 1, and denote by s” the
corresponding vertex in GG. Now,
{s":1<r <k} is a clique of size k in
G since a(z) # a(—x).

(mxVyVz)A(zV-yV-z)A(xzVy)
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- T

(mxVyVz)A(zV-yV-z)A(xzVy)

@ Correctness: I has a satisfying
assignment iff G has a clique of size k.

(=): Let « be a sat. assignment for F'.
For each clause C., choose a literal ¢}
with «a(¢7) = 1, and denote by s” the
corresponding vertex in GG. Now,
{s":1<r <k} is a clique of size k in
G since a(z) # a(—x).

(«<): Let S be a clique of size k in G.
Then, S contains exactly one vertex

s € {v],...,vl,} for each
r€{l,...,k}. Denote by [" the
corresponding literal. Now, for any
r,r’, it is not the case that [, = —[,.
Therefore, there is an assignment « to
var(F’) such that «(l,) = 1 for each
re{l,...,k} and « satisfies F.
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Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of vertices S C V' such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k7

Theorem 19

Vertex Cover is NP-complete.

Groupwork.
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Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of vertices S C V' such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k7

Theorem 19

Vertex Cover is NP-complete.

Groupwork.
Hint: Reduce from Clique.
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Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of vertices S C V' such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k7

Theorem 19

Vertex Cover is NP-complete.

Groupwork.

Hint: Reduce from Clique.

Hint 2: The complement of G = (V, E) is the graph G = (V, E), where
E = {{u,v}:u,v €V and {u,v} ¢ E}.
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Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V| E) is a cycle visiting each vertex exactly
once.

(Alternatively, a permutation of V' such that every two consecutive vertices are
adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle

Input: Graph G
Question:  Does GG have a Hamiltonian Cycle?

Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.
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Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V| E) is a cycle visiting each vertex exactly
once.

(Alternatively, a permutation of V' such that every two consecutive vertices are
adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle
Input: Graph G
Question:  Does GG have a Hamiltonian Cycle?

Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

@ Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.
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Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V| E) is a cycle visiting each vertex exactly
once.

(Alternatively, a permutation of V' such that every two consecutive vertices are
adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle

Input: Graph G
Question:  Does GG have a Hamiltonian Cycle?

Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

@ Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.
@ Let us show: Vertex Cover <p Hamiltonian Cycle
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Hamiltonian Cycle (2)
Hamiltonian Cycle is NP-complete. \

Proof sketch (continued).

@ Let us show: Vertex Cover <p Hamiltonian Cycle
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Hamiltonian Cycle (2)
Hamiltonian Cycle is NP-complete. \

Proof sketch (continued).

@ Let us show: Vertex Cover <p Hamiltonian Cycle
o Let (G = (V, E),k) be an instance for Vertex Cover (VC).

@ We will construct an equivalent instance G’ for Hamiltonian Cycle (HC).
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Hamiltonian Cycle (2)
Hamiltonian Cycle is NP-complete. \

Proof sketch (continued).

Let us show: Vertex Cover <p Hamiltonian Cycle
Let (G = (V, E), k) be an instance for Vertex Cover (VC).

We will construct an equivalent instance G’ for Hamiltonian Cycle (HC).

Intuition: Non-deterministic choices
o for VC: which vertices to select in the vertex cover
e for HC: which route the cycle takes
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Hamiltonian Cycle (3)
Hamiltonian Cycle is NP-complete. I

Proof sketch (continued).

o Add k vertices s, ..., s, to G’ (selector vertices)
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Hamiltonian Cycle (3)
Hamiltonian Cycle is NP-complete. l

Proof sketch (continued).

o Add k vertices s, ..., s, to G’ (selector vertices)
o Each edge of G will be represented by a gadget (subgraph) of G’

@ s.t. the set of edges covered by a vertex x in GG corresponds to a partial cycle
going through all gadgets of G’ representing these edges.
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Hamiltonian Cycle (3)
Hamiltonian Cycle is NP-complete. l

Proof sketch (continued).

o Add k vertices s, ..., s, to G’ (selector vertices)
o Each edge of G will be represented by a gadget (subgraph) of G’

@ s.t. the set of edges covered by a vertex x in GG corresponds to a partial cycle
going through all gadgets of G’ representing these edges.

@ Attention: we need to allow for an edge to be covered by both endpoints
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Hamiltonian Cycle (4)

Gadget representing the edge {u,v} € E
Its states: 'covered by u', 'covered by u and v', 'covered by v’

(a)
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Hamiltonian Cycle
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Subset Sum
Input: Set of positive integers .9, target integer ¢
Question: s there a subset X C S such that ZmeX =17

On your own: read the NP-completeness proof of Subsection 34.5.5 in Chapter 34
of the textbook; stop at any time to see if you can finish it on your own.

Serge Gaspers (UNSW) COMP3121: Intractability



Coping with NP-hardness

@ Approximation algorithms
e There is an algorithm, which, given an instance (G, k) for Vertex Cover, finds
a vertex cover of size at most 2k or correctly determines that G has no vertex
cover of size k.

Exact exponential time algorithms
o There is an algorithm solving Vertex Cover in time O(1.2002"), where
n=|V|.
o Fixed parameter algorithms
o There is an algorithm solving Vertex Cover in time O(1.2738" + kn).
@ Heuristics

o Heuristic A finds a smaller vertex cover than Heuristic B on benchmark
instances Cy,...,Chpy,.

Restricting the inputs

o Vertex Cover can be solved in polynomial time on bipartite graphs, trees,
interval graphs, etc.
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Advertisements

@ Algorithms @ UNSW
http://www.cse.unsw.edu.au/~algo/

o COMP6741 - Parameterized and Exact Computation
http://www.cse.unsw.edu.au/~cs6741/
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Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer ¢
Question: s there a subset X C S such that ) 2 =17
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Question: s there a subset X C S such that ) 2 =17

@ Dynamic Programming algorithm
@ Denote S = {s1,...,5,}
e Table T'[0..n,0..t]
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Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer ¢

Question: s there a subset X C S such that ) 2 =17

@ Dynamic Programming algorithm
@ Denote S = {s1,...,5,}
e Table T'[0..n,0..t]

T[i,r] =

true if 3X C {s1,...,8i} ) exT ="
false otherwise
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Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer ¢
Question: s there a subset X C S such that ) 2 =17

@ Dynamic Programming algorithm
@ Denote S = {s1,...,5,}
e Table T'[0..n,0..t]

(i 1] true if 3X C {s1,...,8i} ) exT ="
i,r] = -
false otherwise

@ bases cases... DP recurrence... running time
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Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer ¢
Question: s there a subset X C S such that ) 2 =17

@ Dynamic Programming algorithm
@ Denote S = {s1,...,5,}
e Table T'[0..n,0..t]

Tli,r] = {true if 3X C {s1,...,8i} D pex T ="

false otherwise

@ bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n - )
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Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer ¢
Question: s there a subset X C S such that ) 2 =17

@ Dynamic Programming algorithm
@ Denote S = {s1,...,5,}
e Table T'[0..n,0..t]

Tli,r] = {true if 3X C {s1,...,8i} D pex T ="

false otherwise

@ bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n - t) (pseudo-polynomial algorithm).
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Weak vs Strong NP-completeness

For problems whose input contains integers:
@ Weakly NP-hard = NP-hard

@ Strongly NP-hard = NP-hard, even if the integers in the input are
represented in unary
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P, NP, and certificates

In the following, F represents poly-time computable predicates (function
returning true or false)

P: class of languages {z : F'(2)}
NP: class of languages {x : 3¢1 F(z,¢1)}
coNP: class of languages {z : V¢; F(z,c1)}

where |c1| < poly(|z|)
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Polynomial Hierarchy

{z : Je1VeoTes F(x, 1, c2,c3)} @ @ {z : Ve IeaVes F(x,eq,ca,c3))

{z : Jer1Veo F(x,c1,c2)} {z :Ve13es Fx,c1,c2)}

{x:3c; F(z,c1)} @‘@ {z :Ver F(x,e1)}
G

{z: Fa)}
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Oracles

@ Oracle for a complexity class IT: solves any problem in IT in one computation
step
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Oracles

@ Oracle for a complexity class IT: solves any problem in IT in one computation
step

o NP™: class of languages accepted in polynomial time by an NTM with access
to an oracle for I1
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Oracles

@ Oracle for a complexity class IT: solves any problem in IT in one computation
step

o NP™: class of languages accepted in polynomial time by an NTM with access
to an oracle for I1

o Alternatively NP class of languages of the form {z : Jc; F'(z,¢1)}
where F'!is a poly-time computable predicate with access to an oracle for IT
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Oracles

@ Oracle for a complexity class IT: solves any problem in IT in one computation
step

o NP™: class of languages accepted in polynomial time by an NTM with access
to an oracle for I1

o Alternatively NP class of languages of the form {z : Jc; F'(z,¢1)}
where F'!is a poly-time computable predicate with access to an oracle for IT

o coNP!: class of languages of the form {z : Ve, F™ (2, ¢;)}

=P Iy =P

Ekp+1 = NP H,irl — coNPZ+
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Oracles

@ Oracle for a complexity class IT: solves any problem in IT in one computation
step

o NP™: class of languages accepted in polynomial time by an NTM with access
to an oracle for I1

o Alternatively NP class of languages of the form {z : Jc; F'(z,¢1)}
where F'!is a poly-time computable predicate with access to an oracle for IT

o coNP!: class of languages of the form {z : Ve, F™ (2, ¢;)}

=P Iy =P

Shi1 = NPZF Iy, = coNPZF

All complexity classes in the polynomial hierarchy are closed under <p reductions.
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Oracles

@ Oracle for a complexity class IT: solves any problem in IT in one computation
step

o NP™: class of languages accepted in polynomial time by an NTM with access
to an oracle for I1

o Alternatively NP class of languages of the form {z : Jc; F'(z,¢1)}
where F'!is a poly-time computable predicate with access to an oracle for IT

o coNP!: class of languages of the form {z : Ve, F™ (2, ¢;)}

=P Iy =P

Shi1 = NPZF Iy, = coNPZF

All complexity classes in the polynomial hierarchy are closed under <p reductions.

NPNP _ NPSAT
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{2 : Fe1VeoTes F(x,eq,c9,¢3)} @ @ {2 : Ve IeaVes F(x,eq,ca,c3))

{ZL' : 301v02 F(iL',Cl,Cz)} @‘ {LL’ : VclﬂcQ F(I,Cl,CQ)}
{z:3cy Flz,c1)} ‘ {z :Vey F(z,c1)}

(.

=
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Counting Problems

<Name of Counting Problem>
Input: <What constitutes an instance>
Question:  <Number of Yes-instances>

@ FP: class of polynomial-time solvable counting problems
@ #P: class of counting problems whose solution is the number of accept paths
of a polynomial-time Non-deterministic Turing Machine

@ Alternatively: a counting problem II is in #P if there exists a
polynomial-time computable function F' such that TI(z) = [{c: F(z,¢)}|
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#P-completeness

@ Turing reduction: ITy <p I if there is an algorithm that solves P; in
polynomial time using an oracle for Il

o II is #P-hard if every problem in #P can be Turing reduced to II
o II is #P-complete if IT is in #P and II is #P-hard.
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#P-completeness

@ Turing reduction: ITy <p I if there is an algorithm that solves P; in
polynomial time using an oracle for Il

o II is #P-hard if every problem in #P can be Turing reduced to II
o II is #P-complete if IT is in #P and II is #P-hard.

#CNF-SAT is #P-complete.
#Bipartite-Perfect-Matchings is #P-complete.
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#P-completeness

@ Turing reduction: ITy <p I if there is an algorithm that solves P; in
polynomial time using an oracle for Il

o II is #P-hard if every problem in #P can be Turing reduced to II
o II is #P-complete if IT is in #P and II is #P-hard.

#CNF-SAT is #P-complete.
#Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete.
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#P-completeness

@ Turing reduction: ITy <p I if there is an algorithm that solves P; in
polynomial time using an oracle for Il

o II is #P-hard if every problem in #P can be Turing reduced to II
o II is #P-complete if IT is in #P and II is #P-hard.

#CNF-SAT is #P-complete.
#Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete.
Hint: What goes wrong when using our reduction CNF-SAT <p 3-CNF-SAT?
How to fix it?
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