COMP3121 Lecture – Week 11

Computational Intractability

Serge Gaspers LiC: Aleks Ignjatovic

¹School of Computer Science and Engineering, UNSW Australia ²Optimisation Group, Decision Sciences, Data61, CSIRO

1 Overview

- 2 Turing Machines, P, and NP
- 3 Reductions and NP-completeness
- 4 NP-complete problems
- 5 Extended class 3821/9801

- Chapter 34, **NP-Completeness**, in the textbook: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
- Slides: http://www.cse.unsw.edu.au/~sergeg/np.pdf

Polynomial-time algorithm

Polynomial-time algorithm:

There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O(n^c)$, where n is the size of the input.

Polynomial-time algorithm

Polynomial-time algorithm: There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O(n^c)$, where n is the size of the input.

Example

Polynomial: n; $n^2 \log_2 n$; n^3 ; n^{20} Super-polynomial: $n^{\log_2 n}$; $2^{\sqrt{n}}$; 1.001^n ; 2^n ; n!

n =	10	100	1,000	10,000	100,000	1,000,000
\overline{n}	$< 1 {\rm \ ms}$	$< 1 {\rm \ ms}$	$< 1 {\rm \ ms}$	$< 1 \mathrm{ms}$	$< 1 {\rm \ ms}$	$< 1 {\rm \ ms}$
$n^2 \log_2 n$	$< 1 \; \mathrm{ms}$	$< 1 \; \mathrm{ms}$	$< 1 \mathrm{ms}$	13 ms	$1.66 \sec$	3.3 min
	$< 1 {\rm \ ms}$	$< 1 \mathrm{ms}$	$10 \ \mathrm{ms}$	$10 \sec$	$2.78 \ \mathrm{hours}$	3.86 months
	31.7 years	> 1 U	> 1 U	> 1 U	> 1 U	> 1 U
$2^{\sqrt{n}}$	$< 1 \ {\rm ms}$	$< 1 \; \mathrm{ms}$	33 ms	> 1 U	> 1 U	> 1 U
1.001^{n}	$< 1 \; \mathrm{ms}$	$< 1 \; \mathrm{ms}$	$< 1 \mathrm{ms}$	$< 1 \mathrm{ms}$	> 1 U	> 1 U
2^n	$< 1 {\rm \ ms}$	> 1 U	> 1 U	> 1 U	> 1 U	> 1 U
n!	$< 1 \ {\rm ms}$	> 1 U	> 1 U	> 1 U	> 1 U	> 1 U

Table: Processing speed for various time complexities, assuming 10^{11} instructions are processed per second (Intel Core i7). Here, U= $13.798 \cdot 10^9$ years.

Central Question

Which computational problems have polynomial-time algorithms?

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

• A polynomial-time algorithm for one NP-complete problem would imply polynomial-time algorithms for all problems in NP.

Gerhard Woeginger's P vs NP page: http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Polynomial vs. NP-complete

Polynomial

- Shortest Path: Given a graph G, two vertices a and b of G, and an integer k, does G have a simple a-b-path of length at most k?
- Euler Tour: Given a graph G, does G have a cycle that traverses each edge of G exactly once?
- 2-CNF SAT: Given a propositional formula *F* in 2-CNF, is *F* satisfiable?

A k-CNF formula is a conjunction (AND) of clauses, and each clause is a disjunction (OR) of at most kliterals, which are negated or unnegated Boolean variables.

NP-complete

- Longest Path: Given a graph G and an integer k, does G have a simple path of length at least k?
- Hamiltonian Cycle: Given a graph *G*, does *G* have a simple cycle that visits each vertex of *G*?
- 3-CNF SAT: Given a propositional formula F in 3-CNF, is Fsatisfiable? *Example:* $(x \lor \neg y \lor z) \land (\neg x \lor z) \land (\neg y \lor \neg z).$

What's next?

- Formally define P, NP, and NP-complete (NPC)
- New skill: show that a problem is NP-complete
- Briefly: what to do when confronted with an NP-complete problem?

1 Overview

- 2 Turing Machines, P, and NP
 - 3 Reductions and NP-completeness
 - 4 NP-complete problems
 - 5 Extended class 3821/9801

<Name of Decision Problem>

Input: What constitutes an instance>

Question: <<u>Yes</u>/No question>

<Name of Decision Problem>

Input: What constitutes an instance>

Question: < Yes/No question>

We want to know which decision problems can be solved in polynomial time – polynomial in the size of the input n.

- Assume a "reasonable" encoding of the input
- Many encodings are polynomial-time equivalent; i.e., one encoding can be computed from another in polynomial time.
- Important exception: unary versus binary encoding of integers.
 - An integer x takes $\lceil \log_2 x \rceil$ bits in binary and $x = 2^{\log_2 x}$ bits in unary.

Exercise on Decision Problems

Cluster into groups of 4-5 students. Answer the following questions. Let $f : \mathbb{N} \to \mathbb{N}$ be a non-decreasing function.

- Given an O(f(n))-time algorithm for Maximum Independent Set, design an algorithm for Independent Set with running time $O(f(n) \cdot poly(n))$.
- **②** Given an O(f(n))-time algorithm for Independent Set, design an algorithm for Maximum Independent Set with running time $O(f(n) \cdot poly(n))$.

Independent	Set
-------------	-----

Input:	Graph G , integer k
Question:	Does G have an independent
	dent set of size at least k

Def. An independent set of a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that no two vertices of S are adjacent in G.

Maximum	Independent Set	
	Graph G A largest independent s of G	set

We can view decision problems as languages.

- Alphabet $\Sigma:$ finite set of symbols. W.l.o.g., $\Sigma=\{0,1\}$
- Language L over Σ : set of strings made with symbols from Σ : $L \subseteq \Sigma^*$
- Fix an encoding of instances of a decision problem Π into Σ
- Define the language $L_{\Pi} \subseteq \Sigma^*$ such that

 $x \in L_{\Pi} \Leftrightarrow x$ is a Yes-instance for Π

Non-deterministic Turing Machine (NTM)

- input word $x \in \Sigma^*$ placed on an infinite tape (memory)
- read-write head initially placed on the first symbol of x
- computation step: if the machine is in state s and reads a, it can move into state s', writing b, and moving the head into direction $D \in \{L, R\}$ if $((s, a), (s', b, D)) \in \delta$.

- Q: finite, non-empty set of states
- Γ: finite, non-empty set of tape symbols
- _ ∈ Γ: blank symbol (the only symbol allowed to occur on the tape infinitely often)
- $\Sigma \subseteq \Gamma \setminus \{b\}$: set of input symbols
- $q_0 \in Q$: start state
- A ⊆ Q: set of accepting (final) states
- $\delta \subseteq (Q \setminus A \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$: transition relation, where L stands for a move to the left and R for a move to the right.

Definition 1

A NTM accepts a word $x \in \Sigma^*$ if there exists a sequence of computation steps starting in the start state and ending in an accept state.

Definition 2

The language accepted by an NTM is the set of words it accepts.

In groups, discuss whether you think that NTMs are realistic computation models

- Is this a good representation of how our computing devices work?
- What is different?

The LEGO Turing Machine https://www.youtube.com/watch?v=cYw2ewoO6c4

Definition 3

A language L is accepted in polynomial time by an NTM M if

- L is accepted by M, and
- there is a constant k such that for any word $x \in L$, the NTM M accepts x in $O(|x|^k)$ computation steps.

Definition 4

A language L is decided in polynomial time by an NTM M if

- there is a constant k such that for any word $x\in L,$ the NTM M accepts x in $O(|x|^k)$ computation steps, and
- there is a constant k' such that for any word x ∈ Σ* \L, on input x the NTM M halts in a non-accepting state (Q \ A) in O(|x|^{k'}) computation steps.

Definition 5

A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine where the transition relation contains at most one tuple $((s, a), (\cdot, \cdot, \cdot))$ for each $s \in Q \setminus A$ and $a \in \Gamma$.

The transition relation δ can be viewed as a function $\delta: Q \setminus A \times \Gamma \to Q \times \Gamma \times \{L, R\}.$

 \Rightarrow For a given input word $x \in \Sigma^*$, there is exactly one sequence of computation steps starting in the start state.

In groups:

Design a DTM $(Q, \Gamma, \Sigma = \{0, 1\}, q_0, A, \delta)$ that accepts palindromes. A palindrome is a word that is equal to its reverse; e.g., 011010110. Recall:

- Q: finite, non-empty set of states
- Γ : finite, non-empty set of tape symbols
- _ $\in \Gamma$: blank symbol (the only symbol allowed to occur on the tape infinitely often)
- $\Sigma \subseteq \Gamma \setminus \{b\}$: set of input symbols
- $q_0 \in Q$: start state
- $A \subseteq Q$: set of accepting (final) states
- $\delta: Q \setminus A \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function, where L stands for a move to the left and R for a move to the right.

Many computational models are polynomial-time equivalent to DTMs:

- Random Access Machine (RAM, used for algorithms in the textbook)
- variants of Turing machines (multiple tapes, infinite only in one direction, ...)

• ...

Definition 6 (P)

 $\mathsf{P} = \{L \subseteq \Sigma^* : \text{ there is a DTM accepting } L \text{ in polynomial time}\}$

Definition 7 (NP)

 $NP = \{L \subseteq \Sigma^* : \text{ there is a NTM accepting } L \text{ in polynomial time} \}$

Definition 8 (coNP)

 $\mathsf{coNP} = \{L \subseteq \Sigma^* : \Sigma^* \setminus L \in \mathsf{NP}\}$

Theorem 9

 $\mathsf{P} = \{ L \subseteq \Sigma^* : \text{ there is a DTM deciding } L \text{ in polynomial time} \}$

Theorem 9

 $\mathsf{P} = \{ L \subseteq \Sigma^* : \text{ there is a DTM deciding } L \text{ in polynomial time} \}$

Proof sketch.

Need to show: if L is accepted by a DTM M in polynomial time, then there is a DTM that decides L in polynomial time. Idea: design a DTM M' that simulates M for $c \cdot n^k$ steps, where $c \cdot n^k$ is the running time of M. (Note that this proof is nonconstructive: we might not know the running time of M.)

Non-deterministic choices

A NTM for an NP-language L makes a polynomial number of non-deterministic choices on input $x \in L$.

We can encode these non-deterministic choices into a certificate c, which is a polynomial-length word.

Now, there exists a DTM, which, given x and c, verifies that $x \in L$.

Thus, $L \in \mathsf{NP}$ iff for each $x \in L$ there exists a polynomial-length certificate c and a DTM M such that given x and a, M can verify in polynomial time that $x \in L$.

CNF-SAT is in NP

- A CNF formula is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.
- An assignment $\alpha : \operatorname{var}(F) \to \{0, 1\}$ satisfies a clause C if it sets a literal of C to true, and it satisfies F if it satisfies all clauses in F.

Example: $(x \lor \neg y \lor z) \land (\neg x \lor z) \land (\neg y \lor \neg z).$

Lemma 10

 $CNF-SAT \in NP$.

Proof.

Exercise.

1 Overview

- 2 Turing Machines, P, and NP
- 3 Reductions and NP-completeness
 - 4 NP-complete problems
 - 5 Extended class 3821/9801

Definition 11

A language L_1 is polynomial-time reducible to a language L_2 , written $L_1 \leq_P L_2$, if there exists a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$,

$$x \in L_1 \Leftrightarrow f(x) \in L_2.$$

A polynomial time algorithm computing f is a reduction algorithm.

Lemma 12

If $L_1, L_2 \in \Sigma^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in \mathsf{P}$ implies $L_1 \in \mathsf{P}$.

Proof.	
Exercise.	

Definition 13 (NP-hard)

A language $L \subseteq \Sigma^*$ is NP-hard if

 $L' \leq_P L$ for every $L' \in \mathsf{NP}$.

Definition 14 (NP-complete)

A language $L \subseteq \Sigma^*$ is NP-complete (in NPC) if

- $L \in \mathsf{NP}$, and
- \bigcirc L is NP-hard.

Theorem 15

CNF-SAT is NP-complete.

Proved by encoding NTMs into SAT and then CNF-SAT (Cook–Levin 1971/1973 and Karp 1972).

Lemma 16

If L is a language such that $L' \leq_P L$ for some $L' \in \mathsf{NPC}$, then L is NP-hard. If, in addition, $L \in \mathsf{NP}$, then $L \in \mathsf{NPC}$.

Lemma 16

If L is a language such that $L' \leq_P L$ for some $L' \in \mathsf{NPC}$, then L is NP-hard. If, in addition, $L \in \mathsf{NP}$, then $L \in \mathsf{NPC}$.

Proof.

For all $L'' \in \mathbb{NP}$, we have $L'' \leq_P L' \leq_P L$. By transitivity, we have $L'' \leq_P L$. Thus, L is \mathbb{NP} -hard. Method to prove that a language L is NP-complete:

- Prove $L \in \mathsf{NP}$
- **2** Prove L is NP-hard.
 - Select a known NP-complete language L'.
 - Describe an algorithm that computes a function f mapping every instance $x \in \Sigma^*$ of L' to an instance f(x) of L.
 - Prove that $x \in L' \Leftrightarrow f(x) \in L$ for all $x \in \Sigma^*$.
 - Prove that the algorithm computing f runs in polynomial time.
Overview

- 2 Turing Machines, P, and NP
- 3 Reductions and NP-completeness
- 4 NP-complete problems
 - 5 Extended class 3821/9801

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT. To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F' as follows. For each clause C in F:

- If C has at most 3 literals, then copy C into F'.
- Otherwise, denote $C = (\ell_1 \lor \ell_2 \lor \cdots \lor \ell_k).$

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F' as follows. For each clause C in F:

- If C has at most 3 literals, then copy C into F'.
- Otherwise, denote $C = (\ell_1 \lor \ell_2 \lor \cdots \lor \ell_k)$. Create k 3 new variables y_1, \ldots, y_{k-3} , and add the clauses $(\ell_1 \lor \ell_2 \lor y_1), (\neg y_1 \lor \ell_3 \lor y_2), (\neg y_2 \lor \ell_4 \lor y_3), \ldots, (\neg y_{k-3} \lor \ell_{k-1} \lor \ell_k)$.

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F' as follows. For each clause C in F:

- If C has at most 3 literals, then copy C into F'.
- Otherwise, denote $C = (\ell_1 \lor \ell_2 \lor \cdots \lor \ell_k)$. Create k 3 new variables y_1, \ldots, y_{k-3} , and add the clauses

 $(\ell_1 \lor \ell_2 \lor y_1), (\neg y_1 \lor \ell_3 \lor y_2), (\neg y_2 \lor \ell_4 \lor y_3), \dots, (\neg y_{k-3} \lor \ell_{k-1} \lor \ell_k).$

Show that F is satisfiable $\Leftrightarrow F'$ is satisfiable. Show that F' can be computed in polynomial time (trivial; use a RAM).

Clique

A clique in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every two vertices of S are adjacent in G.

CliqueInput:Graph G, integer kQuestion:Does G have a clique of size k?

Theorem 18

Clique is NP-complete.

Groupwork.

Clique

A clique in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every two vertices of S are adjacent in G.

CliqueInput:Graph G, integer kQuestion:Does G have a clique of size k?

Theorem 18

Clique is NP-complete.

Groupwork. Hint: Reduce from 3-CNF SAT.

• Clique is in NP

- Clique is in NP
- Let $F = C_1 \wedge C_2 \wedge \ldots C_k$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable

• Clique is in NP

- Let $F = C_1 \wedge C_2 \wedge \ldots C_k$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
- For each clause $C_r = (\ell_1^r \lor \dots \lor \ell_w^r)$, $1 \le r \le k$, create w new vertices v_1^r, \dots, v_w^r

$$(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y)$$

- Clique is in NP
- Let $F = C_1 \wedge C_2 \wedge \ldots C_k$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
- For each clause $C_r = (\ell_1^r \lor \dots \lor \ell_w^r)$, $1 \le r \le k$, create w new vertices v_1^r, \dots, v_w^r
- Add an edge between v_i^r and v_j^s if

$$\label{eq:relation} \begin{array}{ll} r \neq s & \mbox{and} \\ \ell^r_i \neq \neg \ell^s_j & \mbox{where } \neg \neg x = x. \end{array}$$

• Check correctness and polynomial running time

• Correctness: F has a satisfying assignment iff G has a clique of size k.

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow): Let α be a sat. assignment for F. For each clause C_r , choose a literal ℓ_i^r with $\alpha(\ell_i^r) = 1$, and denote by s^r the corresponding vertex in G. Now, $\{s^r : 1 \le r \le k\}$ is a clique of size k in G since $\alpha(x) \ne \alpha(\neg x)$.

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow): Let α be a sat. assignment for F. For each clause C_r , choose a literal ℓ_i^r with $\alpha(\ell_i^r) = 1$, and denote by s^r the corresponding vertex in G. Now, $\{s^r : 1 \le r \le k\}$ is a clique of size k in G since $\alpha(x) \ne \alpha(\neg x)$.
- (\Leftarrow): Let S be a clique of size k in G. Then, S contains exactly one vertex $s_r \in \{v_1^r, \ldots, v_w^r\}$ for each $r \in \{1, \ldots, k\}$. Denote by l^r the corresponding literal. Now, for any r, r', it is not the case that $l_r = \neg l_{r'}$. Therefore, there is an assignment α to $\operatorname{var}(F)$ such that $\alpha(l_r) = 1$ for each $r \in \{1, \ldots, k\}$ and α satisfies F.

A vertex cover in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

Vertex Cover	r
Input:	Graph G , integer k
Question:	Does G have a vertex cover of size k ?

Theorem 19

Vertex Cover is NP-complete.

Groupwork.

A vertex cover in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

Vertex Cover	
Input:	Graph G , integer k
Question:	Does G have a vertex cover of size k ?

Theorem 19

Vertex Cover is NP-complete.

Groupwork. **Hint:** Reduce from Clique. A vertex cover in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

Vertex Cover	
Input:	Graph G , integer k
Question:	Does G have a vertex cover of size k ?

Theorem 19

Vertex Cover is NP-complete.

Groupwork. **Hint:** Reduce from Clique. **Hint 2:** The complement of G = (V, E) is the graph $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{\{u, v\} : u, v \in V \text{ and } \{u, v\} \notin E\}.$

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V, E) is a cycle visiting each vertex exactly once.

(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle		
Input:	Graph G	
Question:	Does G have a Hamiltonian Cycle?	

Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V, E) is a cycle visiting each vertex exactly once.

(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle		
Input:	Graph G	
Question:	Does G have a Hamiltonian Cycle?	

Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

• Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V, E) is a cycle visiting each vertex exactly once.

(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle		
Input:	Graph G	
Question:	Does G have a Hamiltonian Cycle?	

Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

- Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.
- Let us show: Vertex Cover \leq_P Hamiltonian Cycle

Hamiltonian Cycle (2)

Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

• Let us show: Vertex Cover \leq_P Hamiltonian Cycle

Hamiltonian Cycle (2)

Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_P Hamiltonian Cycle
- Let (G = (V, E), k) be an instance for Vertex Cover (VC).
- We will construct an equivalent instance G' for Hamiltonian Cycle (HC).

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_P Hamiltonian Cycle
- Let (G = (V, E), k) be an instance for Vertex Cover (VC).
- We will construct an equivalent instance G' for Hamiltonian Cycle (HC).
- Intuition: Non-deterministic choices
 - for VC: which vertices to select in the vertex cover
 - for HC: which route the cycle takes

• ...

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

• Add k vertices s_1, \ldots, s_k to G' (selector vertices)

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_1, \ldots, s_k to G' (selector vertices)
- Each edge of G will be represented by a gadget (subgraph) of G'
- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G' representing these edges.

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_1, \ldots, s_k to G' (selector vertices)
- Each edge of G will be represented by a gadget (subgraph) of G'
- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G' representing these edges.
- Attention: we need to allow for an edge to be covered by both endpoints

Gadget representing the edge $\{u,v\}\in E$ Its states: 'covered by u', 'covered by u and v', 'covered by v'

Hamiltonian Cycle (5)

Subset Sum	
Input:	Set of positive integers S , target integer t
Question:	Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

On your own: read the NP-completeness proof of Subsection 34.5.5 in Chapter 34 of the textbook; stop at any time to see if you can finish it on your own.

- Approximation algorithms
 - There is an algorithm, which, given an instance (G, k) for Vertex Cover, finds a vertex cover of size at most 2k or correctly determines that G has no vertex cover of size k.
- Exact exponential time algorithms
 - There is an algorithm solving Vertex Cover in time $O(1.2002^n)$, where n = |V|.
- Fixed parameter algorithms
 - There is an algorithm solving Vertex Cover in time $O(1.2738^k + kn)$.
- Heuristics
 - Heuristic A finds a smaller vertex cover than Heuristic B on benchmark instances C_1, \ldots, C_m .
- Restricting the inputs
 - Vertex Cover can be solved in polynomial time on bipartite graphs, trees, interval graphs, etc.

- Algorithms @ UNSW http://www.cse.unsw.edu.au/~algo/
- COMP6741 Parameterized and Exact Computation http://www.cse.unsw.edu.au/~cs6741/

Overview

- 2 Turing Machines, P, and NP
- 3 Reductions and NP-completeness
- 4 NP-complete problems
- 5 Extended class 3821/9801

Subset SumInput:Set of positive integers S, target integer tQuestion:Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Subset SumInput:Set of positive integers S, target integer tQuestion:Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

- Dynamic Programming algorithm
- Denote $S = \{s_1, \ldots, s_n\}$
- Table T[0..n, 0..t]
- Dynamic Programming algorithm
- Denote $S = \{s_1, \ldots, s_n\}$
- Table T[0..n, 0..t]

$$T[i,r] = \begin{cases} \mathsf{true} & \text{if } \exists X \subseteq \{s_1, \dots, s_i\} : \sum_{x \in X} x = r \\ \mathsf{false} & \text{otherwise} \end{cases}$$

- Dynamic Programming algorithm
- Denote $S = \{s_1, \ldots, s_n\}$
- Table T[0..n, 0..t]

$$T[i,r] = \begin{cases} \mathsf{true} & \text{if } \exists X \subseteq \{s_1, \dots, s_i\} : \sum_{x \in X} x = r \\ \mathsf{false} & \text{otherwise} \end{cases}$$

• bases cases... DP recurrence... running time

- Dynamic Programming algorithm
- Denote $S = \{s_1, \ldots, s_n\}$
- Table T[0..n, 0..t]

$$T[i,r] = \begin{cases} \mathsf{true} & \text{if } \exists X \subseteq \{s_1, \dots, s_i\} : \sum_{x \in X} x = r \\ \mathsf{false} & \text{otherwise} \end{cases}$$

• bases cases... DP recurrence... running time Subset Sum can be solved in time $O(n \cdot t)$

- Dynamic Programming algorithm
- Denote $S = \{s_1, \ldots, s_n\}$
- Table T[0..n, 0..t]

$$T[i,r] = \begin{cases} \mathsf{true} & \text{if } \exists X \subseteq \{s_1, \dots, s_i\} : \sum_{x \in X} x = r \\ \mathsf{false} & \text{otherwise} \end{cases}$$

• bases cases... DP recurrence... running time

Subset Sum can be solved in time $O(n \cdot t)$ (pseudo-polynomial algorithm).

For problems whose input contains integers:

- Weakly NP-hard = NP-hard
- Strongly NP-hard = NP-hard, even if the integers in the input are represented in unary

- In the following, F represents poly-time computable predicates (function returning true or false)
- P: class of languages $\{x : F(x)\}$
- NP: class of languages $\{x : \exists c_1 \ F(x, c_1)\}$
- coNP: class of languages $\{x : \forall c_1 \ F(x, c_1)\}$
- where $|c_1| \leq \mathsf{poly}(|x|)$

Polynomial Hierarchy

 \bullet Oracle for a complexity class $\Pi:$ solves any problem in Π in one computation step

- \bullet Oracle for a complexity class $\Pi:$ solves any problem in Π in one computation step
- NP $^{\Pi}:$ class of languages accepted in polynomial time by an NTM with access to an oracle for Π

- \bullet Oracle for a complexity class $\Pi:$ solves any problem in Π in one computation step
- NP $^{\Pi}:$ class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively NP^Π: class of languages of the form {x : ∃c₁ F^Π(x, c₁)} where F^Π is a poly-time computable predicate with access to an oracle for Π

- \bullet Oracle for a complexity class $\Pi:$ solves any problem in Π in one computation step
- NP $^{\Pi}:$ class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively NP^{II}: class of languages of the form $\{x : \exists c_1 \ F^{\Pi}(x, c_1)\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP^{II}: class of languages of the form $\{x : \forall c_1 \ F^{\Pi}(x, c_1)\}$

- \bullet Oracle for a complexity class $\Pi:$ solves any problem in Π in one computation step
- NP^ Π : class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively NP^{II}: class of languages of the form $\{x : \exists c_1 \ F^{\Pi}(x, c_1)\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP^{Π}: class of languages of the form $\{x : \forall c_1 F^{\Pi}(x, c_1)\}$

$$\begin{split} \boldsymbol{\Sigma}_0^P &= \mathsf{P} & \boldsymbol{\Pi}_0^P &= \mathsf{P} \\ \boldsymbol{\Sigma}_{k+1}^P &= \mathsf{N}\mathsf{P}^{\boldsymbol{\Sigma}_k^P} & \boldsymbol{\Pi}_{k+1}^P &= \mathsf{co}\mathsf{N}\mathsf{P}^{\boldsymbol{\Sigma}_k^P} \end{split}$$

- \bullet Oracle for a complexity class $\Pi:$ solves any problem in Π in one computation step
- NP^ Π : class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively NP^{II}: class of languages of the form $\{x : \exists c_1 \ F^{\Pi}(x, c_1)\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP^{Π}: class of languages of the form $\{x : \forall c_1 F^{\Pi}(x, c_1)\}$

$$\begin{split} \boldsymbol{\Sigma}^{P}_{0} &= \mathsf{P} & \boldsymbol{\Pi}^{D}_{0} &= \mathsf{P} \\ \boldsymbol{\Sigma}^{P}_{k+1} &= \mathsf{N}\mathsf{P}^{\boldsymbol{\Sigma}^{P}_{k}} & \boldsymbol{\Pi}^{P}_{k+1} &= \mathsf{co}\mathsf{N}\mathsf{P}^{\boldsymbol{\Sigma}^{P}_{k}} \end{split}$$

All complexity classes in the polynomial hierarchy are closed under \leq_P reductions.

- \bullet Oracle for a complexity class $\Pi:$ solves any problem in Π in one computation step
- NP^ Π : class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively NP^{II}: class of languages of the form $\{x : \exists c_1 \ F^{\Pi}(x, c_1)\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP^{Π}: class of languages of the form $\{x : \forall c_1 F^{\Pi}(x, c_1)\}$

$$\begin{split} \boldsymbol{\Sigma}_{0}^{P} &= \mathsf{P} & \boldsymbol{\Pi}_{0}^{P} &= \mathsf{P} \\ \boldsymbol{\Sigma}_{k+1}^{P} &= \mathsf{N}\mathsf{P}^{\boldsymbol{\Sigma}_{k}^{P}} & \boldsymbol{\Pi}_{k+1}^{P} &= \mathsf{co}\mathsf{N}\mathsf{P}^{\boldsymbol{\Sigma}_{k}^{P}} \end{split}$$

All complexity classes in the polynomial hierarchy are closed under \leq_P reductions.

$$NP^{NP} = NP^{SAT}$$

<name counting="" of="" problem=""></name>	
Input:	<what an="" constitutes="" instance=""></what>
Question:	<number of="" yes-instances=""></number>

- FP: class of polynomial-time solvable counting problems
- #P: class of counting problems whose solution is the number of accept paths of a polynomial-time Non-deterministic Turing Machine
- Alternatively: a counting problem Π is in #P if there exists a polynomial-time computable function F such that Π(x) = |{c : F(x, c)}|

- Turing reduction: $\Pi_1 \leq_T \Pi_2$ if there is an algorithm that solves P_1 in polynomial time using an oracle for Π_2
- Π is $\#\mathsf{P}\text{-hard}$ if every problem in $\#\mathsf{P}$ can be Turing reduced to Π
- Π is #P-complete if Π is in #P and Π is #P-hard.

- Turing reduction: $\Pi_1 \leq_T \Pi_2$ if there is an algorithm that solves P_1 in polynomial time using an oracle for Π_2
- Π is $\#\mathsf{P}\text{-hard}$ if every problem in $\#\mathsf{P}$ can be Turing reduced to Π
- Π is #P-complete if Π is in #P and Π is #P-hard.

#CNF-SAT is #P-complete. #Bipartite-Perfect-Matchings is #P-complete.

- Turing reduction: $\Pi_1 \leq_T \Pi_2$ if there is an algorithm that solves P_1 in polynomial time using an oracle for Π_2
- Π is $\#\mathsf{P}\text{-hard}$ if every problem in $\#\mathsf{P}$ can be Turing reduced to Π
- Π is #P-complete if Π is in #P and Π is #P-hard.

#CNF-SAT is #P-complete. #Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete.

- Turing reduction: $\Pi_1 \leq_T \Pi_2$ if there is an algorithm that solves P_1 in polynomial time using an oracle for Π_2
- Π is $\#\mathsf{P}\text{-hard}$ if every problem in $\#\mathsf{P}$ can be Turing reduced to Π
- Π is #P-complete if Π is in #P and Π is #P-hard.

#CNF-SAT is #P-complete. #Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete. **Hint:** What goes wrong when using our reduction CNF-SAT \leq_P 3-CNF-SAT? How to fix it?