Motion Planning

COMP3431 Robot Software Architectures

Motion Planning

- Task Planner can tell the robot discrete steps but can't say how to execute them
- Discrete actions must be turned into operations in a continuous world
- Planning actions set goals and constraints, something else must implement motor actions

Configuration Space

- Treat robot as a point, expand obstacles
- More complicated if robot is not a regular shape (piano movers problem)

Robotic Motion Planning: RRT's

Robotics Institute 16-735 http://www.cs.cmu.edu/~motion

Howie Choset http://www.cs.cmu.edu/~choset

RI 16-735, Howie Choset with slides from James Kuffner

Rapidly-Exploring Random Tree

RI 16-735, Howie Choset with slides from James Kuffner

Path Planning with RRTs (Rapidly-Exploring Random Trees)

BUILD_RRT (q_{init}) { $T.init(q_{init})$; for k = 1 to K do $q_{rand} = RANDOM_CONFIG()$; EXTEND (T, q_{rand})

RI 16-735, Howie Choset with slides from James Kuffner

Path Planning with RRTs (Some Details)

BUILD_RRT (q_{init}) {

T.init(q_{init}); for k = 1 to K do $q_{rand} = \text{RANDOM}_\text{CONFIG}();$ EXTEND(T, q_{rand})

STEP_LENGTH: How far to sample

- 1. Sample just at end point
- 2. Sample all along
- 3. Small Step

Extend returns

- 1. Trapped, cant make it
- 2. Extended, steps toward node
- 3. Reached, connects to node

RI 16-735, Howie Choset with slides from James Kuffner

RRT vs. Exhaustive Search

• Discrete

A* may try all edges

Probabilistically subsample all edges

Continuous

Continuum of choices

Probabilistically subsample all edges

Naïve Random Tree

RRTs and Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

RI 16-735, Howie Choset with slides from James Kuffner

Biases

- Bias toward larger spaces
- Bias toward goal
 - When generating a random sample, with some probability pick the goal instead of a random node when expanding
 - This introduces another parameter
 - James' experience is that 5-10% is the right choice
 - If you do this 100%, then this is a RPP

Grow two RRTs towards each other

RI 16-735, Howie Choset with slides from James Kuffner

A single RRT-Connect iteration...

1) One tree grown using random target

2) New node becomes target for other tree

3) Calculate node "nearest" to target

5) If successful, keep extending branch

5) If successful, keep extending branch

6) Path found if branch reaches target

7) Return path connecting start and goal

Basic RRT-Connect

```
\begin{aligned} & \text{RRT\_CONNECT} (q_{init}, q_{goal}) \\ & T_{a}.init(q_{init}); \\ & T_{b}.init(q_{goal}); \\ & \text{for } k = 1 \text{ to K do} \\ & q_{rand} = \text{RANDOM\_CONFIG()}; \\ & \text{if not } (\text{EXTEND}(T_{a}, q_{rand}) = \text{Trapped}) \text{ then} \\ & \text{if } (\text{EXTEND}(T_{b}, q_{new}) = \text{Reached}) \text{ then} \\ & \text{Return PATH}(T_{a}, T_{b}); \\ & \text{SWAP}(T_{a}, T_{b}); \\ & \text{Return Failure;} \end{aligned}
```

Instead of switching, use T_a as smaller tree. This helped James a lot

Articulated Robot

RI 16-735, Howie Choset with slides from James Kuffner

Highly Articulated Robot

RI 16-735, Howie Choset with slides from James Kuffner

Hovercraft with 2 Thusters

RI 16-735, Howie Choset with slides from James Kuffner

Out of This World Demo

RI 16-735, Howie Choset with slides from James Kuffner

Left-turn only forward car

RI 16-735, Howie Choset with slides from James Kuffner

Open Problems

Open Problems

- Rate of convergence
- Optimal sampling strategy?

Open Issues

- Metric Sensitivity
- Nearest-neighbor Efficiency

Applications of RRTs

Robotics Applications mobile robotics manipulation humanoids **Other Applications** biology (drug design) manufacturing and virtual prototyping (assembly analysis) verification and validation computer animation and real-time graphics aerospace **RRT** extensions discrete planning (STRIPS and Rubik's cube) real-time RRTs anytime RRTs dynamic domain RRTs deterministic RRTs parallel RRTs hybrid RRTs

RRT Summary

Advantages

- Single parameter
- Balance between greedy search and exploration
- Converges to sampling distribution in the limit
- Simple and easy to implement

Disadvantages

- Metric sensitivity
- Nearest-neighbor efficiency
- Unknown rate of convergence
- "long tail" in computation time distribution

Links to Further Reading

- Steve LaValle's online book: "Planning Algorithms" (chapters 5 & 14) <u>http://planning.cs.uiuc.edu/</u>
- The RRT page: <u>http://msl.cs.uiuc.edu/rrt/</u>
- Motion Planning Benchmarks
 Parasol Group, Texas A&M
 <u>http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/</u>