
1

Interrupts

Lecturer: Sri Parameswaran

Notes by: Annie Guo

2

CPU Interacts with I/O

Two approaches:

⚫ Polling

⚫ Software queries I/O devices.

⚫ No extra hardware needed.

⚫ Not efficient.

⚫ CPU may waste processor cycles to query a device even if it

does not need any service.

⚫ Interrupts

⚫ I/O devices generate signals to request services from CPU .

⚫ Need special hardware to implement interrupt services.

⚫ Efficient.

⚫ A signal is generated only if the I/O device needs services from

CPU.

3

Interrupt Systems

⚫ An interrupt system implements interrupt

services

⚫ It basically performs three tasks:

⚫ Recognize interrupt events

⚫ Respond to the interrupts

⚫ Resume normal programmed task

4

Recognize Interrupt Events

⚫ Interrupt events

⚫ Associated with interrupt signals:

⚫ In different forms, including levels and edges.

⚫ Can be multiple and synchronous

⚫ Namely, there may be many sources to generate an

interrupts; a number of interrupts can be generated at

the same time.

⚫ Approaches are required to:

⚫ Identify an interrupt event among multiple sources

⚫ Determine which interrupts to serve if there are

multiple simultaneous interrupts

5

Respond to Interrupts

⚫ Handling interrupt

⚫ Wait for the current instruction to finish.

⚫ Acknowledge the interrupting device.

⚫ Branch to the correct interrupt service routine

(interrupt handler) to service interrupting device.

6

Resume Normal Task

⚫ Return to the interrupted program at the point

it was interrupted.

7

Interrupt Process Control

⚫ Interrupts can be enabled or disabled

⚫ Can be controlled in two ways:

⚫ Software control

⚫ Allow programmers to enable and disable selected/all

interrupts.

⚫ Hardware control

⚫ Disable further interrupts while an interrupt is being

serviced

8

Transferring Control to

Interrupt Service Routine

⚫ Hardware needs to save the return address.
⚫ Most processors save the return address on the stack.

⚫ Hardware may also save some registers such as
program status register.
⚫ AVR does not save any registers. It is the programmers’

responsibility to save the program status register and
conflict registers.

⚫ The delay from the time the IRQ is generated by the
interrupting device to the time the Interrupt Service
Routine (ISR) starts to execute is called interrupt
latency.

9

Interrupt Service Routine

⚫ A sequence of code to be executed when the
corresponding interrupt is responded by CPU.

⚫ Interrupt service routine is a special subroutine,
therefore can be constructed with three parts:
⚫ Prologue:

⚫ Code for saving conflict registers on the stack.

⚫ Body:

⚫ Code for doing the required task.

⚫ Epilogue:

⚫ Code for restoring all saved registers from the stack.

⚫ The last instruction is the return-from-interrupt instruction.

10

Software Interrupt

⚫ Software interrupt is the interrupt generated by

software without a hardware-generated-IRQ.

⚫ Software interrupt is typically used to implement

system calls in OS.

⚫ Some processors have a special machine

instruction to generate software interrupt.

⚫ SWI in ARM.

⚫ AVR does NOT provide a software interrupt

instruction.

⚫ Programmers can use External Interrupts to implement

software interrupts.

11

Exceptions

⚫ Abnormalities that occur during the normal

operation of the processor.

⚫ Examples are internal bus error, memory access

error and attempts to execute illegal instructions.

⚫ Some processors handle exceptions in the

same way as interrupts.

⚫ AVR does not handle exceptions.

12

Reset

⚫ Reset is a type of interrupt present in most

processors (including AVR).

⚫ Non-maskable.

⚫ It does not do other interrupt processes, such

as saving conflict registers. It initializes the

system to some initial state.

13

AVR Interrupts
⚫ Basically can be divided into internal and external

interrupts

⚫ Each has a dedicated interrupt vector

⚫ Hardware is used to recognize interrupts

⚫ To enable an interrupt, two control bits must be set
⚫ the Global Interrupt Enable bit (I bit) in the Status Register

⚫ Using sei

⚫ the enable bit for that interrupt

⚫ To disable all maskable interrupts, reset the I bit in
SREG
⚫ Using cli instruction

⚫ Priority of interrupts is used to handle multiple
simultaneous interrupts

14

Set Global Interrupt Flag

⚫ Syntax: sei

⚫ Operands: none

⚫ Operation: I  1.

⚫ Sets the global interrupt flag (I) in SREG. The
instruction following SEI will be executed before
any pending interrupts.

⚫ Words: 1

⚫ Cycles: 1

⚫ Example:
sei ; set global interrupt enable

sleep ; enter sleep state, waiting for an interrupt

15

Clear Global Interrupt Flag
⚫ Syntax: cli

⚫ Operands: none

⚫ Operation: I  0

⚫ Clears the Global interrupt flag in SREG.
Interrupts will be immediately disabled.

⚫ Words: 1

⚫ Cycles: 1

⚫ Example:
in r18, SREG ; store SREG value

cli ; disable interrupts

; do something very important here

out SREG, r18 ; restore SREG value

16

Interrupt Response Time

⚫ The interrupt execution response for all the

enabled AVR interrupts is basically five clock

cycles minimum.

⚫ For saving the Program Counter (2 clock cycles)

⚫ For jumping to the interrupt routine (3 clock

cycles)

17

Interrupt Vectors

⚫ Each interrupt has a 4-byte (2-word) interrupt vector,

containing an instruction to be executed after MCU

has accepted the interrupt.

⚫ The lowest addresses in the program memory space

are by default defined as the section for Interrupt

Vectors.

⚫ The priority of an interrupt is based on the position

of its vector in the program memory

⚫ The lower the address the higher is the priority level.

⚫ RESET has the highest priority

18

Interrupt Vectors in Mega2560

19

Interrupt Vectors in Mega2560

(cont.)

20

Interrupt Vectors in Mega2560

(cont.)

21

Interrupt Vectors in Mega2560

(cont.)

22

Interrupt Process

⚫ When an interrupt occurs, the Global Interrupt

Enable I-bit is cleared and all interrupts are disabled.

⚫ The interrupt routine can set the I-bit to allow nested

interrupts

⚫ The I-bit is automatically set when a Return from

Interrupt instruction – RETI – is executed.

⚫ When the AVR exits from an interrupt, it will always

return to the main program and execute one more

instruction before any pending interrupt is served.

⚫ Reset interrupt is an exception

23

Initialization of Interrupt Vector

Table in Mega2560

⚫ Typically an interrupt vector contains a

branch instruction (JMP or RJMP) that

branches to the first instruction of the

interrupt service routine.

⚫ Or simply RETI (return-from-interrupt) if you

don’t handle this interrupt.

24

Example of IVT Initialization in

Mega2560

.include "m2560def.inc"

.cseg

.org 0x0000 ; Reset vector is at address 0x0000

rjmp RESET ; Jump to the start of Reset interrupt service routine

; Relative jump is used assuming RESET is not far

.org INT0addr ; Addresses of vectors are defined in m2560def.inc

jmp IRQ0 ; Long jump is used assuming IRQ0 is very far away

.org INT1addr

reti ; Return to the break point without handling the interrupt

…

RESET: ; The interrupt service routine for RESET starts here.

…

IRQ0: ; The interrupt service routine for IRQ0 starts here.

25

26

External Interrupts

⚫ The external interrupts are triggered by the

INT7:0 pins.

⚫ If enabled, the interrupts will trigger even if the

INT7:0 are configured as outputs

⚫ This feature provides a way of generating a software

interrupt.

⚫ Can be triggered by a falling or rising edge or a

logic level

⚫ Specified in External Interrupt Control Register

▪ EICRA (for INT3:0)

▪ EICRB (for INT7:4)

27

External Interrupts (cont.)

⚫ To enable an interrupt, two bits must be set

⚫ I bit in SREG

⚫ INTx bit in EIMSK

⚫ To activate an interrupt, the following must be

met:

⚫ The interrupt must be enabled

⚫ The associated external pin must have a

designed signal asserted.

28

EIMSK

⚫ External Interrupt Mask Register

⚫ A bit is set to enable the related interrupt

29

EICRA
⚫ External Interrupt Control Register A

⚫ For INT0-3

⚫ Defines the type of signals that activates the external

Interrupt

⚫ on rising or falling edge or level sensed.

30

EICRB
⚫ External Interrupt Control Register B

⚫ For INT4-7

⚫ Defines the type of signals that activates the External

Interrupt

⚫ on rising or falling edge or level sensed.

31

EIFR

⚫ Interrupt flag register

⚫ A bit is set when an event-triggered interrupt is

enabled and the related event on the related INT

pin happens.

⚫ Event-triggered interrupt: signal edge activated.

32

Example 1

⚫ Design a system, where the state of LEDs

toggles under the control of the user.

33

Example 1 (solution)

⚫ Use an external interrupt

⚫ Connect the external interrupt pin to a push button

⚫ When the button pressed, the interrupt is generated

⚫ In the assembly code

⚫ Set up the interrupt

⚫ Set up the interrupt vector

⚫ Enable the interrupt

⚫ Write a service routine for this interrupt

⚫ Change the display pattern

⚫ Write the pattern to the port connected to the LEDs

34

Code for Example 1
.include "m2560def.inc“

.def temp =r16

.def output = r17

.def count = r18

.equ PATTERN = 0b01010101

; set up interrupt vectors
jmp RESET

.org INT0addr
jmp EXT_INT0

RESET:
ldi temp, low(RAMEND) ; initialize stack
out SPL, temp
ldi temp, high(RAMEND)
out SPH, temp

ser temp ; set Port C as output
out DDRC, temp
out PORTC, temp
ldi output, PATTERN

; continued

35

Code for Example 1
; continued

ldi temp, (2 << ISC00) ; set INT0 as falling-
sts EICRA, temp ; edge triggered interrupt

in temp, EIMSK ; enable INT0
ori temp, (1<<INT0)
out EIMSK, temp

sei ; enable Global Interrupt
jmp main

EXT_INT0:
push temp ; save register
in temp, SREG ; save SREG
push temp

com output ; flip the pattern
out PORTC, output
inc count

pop temp ; restore SREG
out SREG, temp
pop temp ; restore register
reti

36

Code for Example 1
; continued

; main - does nothing but increment a counter
main:

clr count
clr temp

loop:
inc temp ; a dummy task in main
rjmp loop

37

Timer/Counters

⚫ Simply binary counters

⚫ Used in two different modes:
⚫ Timer

⚫ Counting time periods

⚫ Counter

⚫ Counting the events or pulse or something of this nature

⚫ Can be used to
⚫ Measure time periods, speed, frequency

⚫ Generate PWM signals

⚫ Schedule real-time tasks

⚫ etc.

38

Timer/Counters in AVR

⚫ In AVR, there are 8-bit and 16-bit

timer/counters.

⚫ Timer 0 and Timer 2: 8-bit

⚫ Timer 1,3-5 16-bit

39

8-bit Timer/Counter Block

Diagram

40

8-bit Timer/Counter

⚫ The counter can be initialized with

⚫ 0 (controlled by reset)

⚫ a number (controlled by count signal)

⚫ Can count up or down

⚫ controlled by direction signal

⚫ Those controlled signals are generated by hardware control
logic

⚫ The control logic is further controlled by programmer by

⚫ Writing control bits into TCCRnA/TCCRnB

⚫ Output

⚫ Overflow interrupt request bit

⚫ Output Compare interrupt request bit

⚫ OCn bit: Output Compare bit for waveform generation

41

TIMSK0

⚫ Timer/Counter Interrupt Mask Register

⚫ Set TOIE0 (and I-bit in SREG) to enable the

Overflow Interrupt

⚫ Set OCIE0(A/B) (and I bit in SREG) to enable

Compare Match Interrupt

Control bits for timer/counter0

42

TIFR0
⚫ Timer/Counter Interrupt Flag Register

⚫ OCF0(A/B) bit is set when a Compare Match between the

counter and the data in OCR0(A/B) (Output Compare

Registers).

⚫ When (I=1)&&(OCIE0(A/B)=1)&&(OCF0(A/B)=1), the

related Timer/Counter Compare Match Interrupt is

executed.

⚫ OCF0(A/B) bit is cleared by hardware when the related

interrupt is handled or can be cleared by writing a logic 0 to

the flag

Interrupt control bits for timer/counter0

43

TIFR0 (cont.)
⚫ Timer/Counter Interrupt Flag Register

⚫ TOV0 bit is set when an overflow occurs in the counter.

⚫ When (I=1)&&(TOIE0=1)&&(TOV0=1), the related

Timer/Counter Overflow Interrupt is executed.

⚫ In PWM mode, this bit is set when the counter changes

counting direction at 0x00

⚫ OCF0(A/B) bit is cleared by hardware when the related

interrupt is handled or can be cleared by writing a logic 0 to

the flag

Interrupt control bits for timer/counter0

44

TCCR0A/B

⚫ Timer Counter Control Register

⚫ For Timer/Counter0

⚫ Similar registers for other timers

45

TCCR0 Bit Description

⚫ COM0xn/WGM0n/FOC0

⚫ Control the mode of operation

⚫ The behavior of the Timer/Counter and the output, is defined by

the combination of the Waveform Generation mode (WGM02:00)

and Compare Output mode (COM0x1:0) bits.

⚫ The simplest mode of operation is the Normal Mode (WGM02:00

=00). In this mode the counting direction is always up. The

counter rolls over when it passes its maximum 8-bit value (TOP =

0xFF) and then restarts from the bottom (0x00).

⚫ Refer to Mega2560 Data Sheet (pages 118~194) for details.

46

TCCR0 Bit Description (cont.)
⚫ Bit 2:0 in TCCR0B

⚫ Control the clock selection

47

Example 2

⚫ Implement a scheduler that can execute a

task every one second.

48

Example 2 (solution)

⚫ Use Timer0 to count the time

⚫ Let’s set Timer0 prescaler to 8

⚫ The time-out for the setting should be
▪ 256*(clock period) = 256*8/(16 MHz)

= 128 us

▪ Namely, we can set the Timer0 overflow interrupt that is to occur every
128 us.

▪ Note, Clktos = 1/16 MHz (obtained from the data sheet)

⚫ For one second, there are
▪ 1000000/128 = ~7812 interrupts

⚫ In code,

⚫ Set Timer0 interrupt to occur every 128 microseconds

⚫ Use a counter to count to 7812 interrupts for counting 1 second

⚫ To observe the 1 second time period, toggle an LED every
second.

49

Example 3
; This program implements a timer that counts one second using

; Timer0 interrupt

.include "m2560def.inc"

.equ PATTERN = 0b11110000

.def temp = r16

.def leds = r17

; The macro clears a word (2 bytes) in a memory

; the parameter @0 is the memory address for that word

.macro clear

ldi YL, low(@0) ; load the memory address to Y

ldi YH, high(@0)

clr temp

st Y+, temp ; clear the two bytes at @0 in SRAM

st Y, temp

.endmacro

; contined

50

Example 3
; continued
.dseg
SecondCounter:

.byte 2 ; Two-byte counter for counting seconds.
TempCounter:

.byte 2 ; Temporary counter. Used to determine
; if one second has passed

.cseg

.org 0x0000
jmp RESET
jmp DEFAULT ; No handling for IRQ0.
jmp DEFAULT ; No handling for IRQ1.

.org OVF0addr
jmp Timer0OVF ; Jump to the interrupt handler for

; Timer0 overflow.
…
jmp DEFAULT ; default service for all other interrupts.

DEFAULT: reti ; no service
; continued

51

Example 3

; continued

RESET: ldi temp, high(RAMEND) ; Initialize stack pointer

out SPH, temp

ldi temp, low(RAMEND)

out SPL, temp

ser temp ; set Port C as output

out DDRC, temp

rjmp main

; continued

52

Example 3

; continued

Timer0OVF: ; interrupt subroutine to Timer0

in temp, SREG

push temp ; Prologue starts.

push YH ; Save all conflict registers in the prologue.

push YL

push r25

push r24 ; Prologue ends.

; Load the value of the temporary counter.

lds r24, TempCounter

lds r25, TempCounter+1

adiw r25:r24, 1 ; Increase the temporary counter by one.

; continued

53

Example 3

cpi r24, low(7812) ; Check if (r25:r24) = 7812

ldi temp, high(7812) ; 7812 = 106/128

cpc r25, temp

brne NotSecond

com leds

out PORTC, leds

clear TempCounter ; Reset the temporary counter.

; Load the value of the second counter.

lds r24, SecondCounter

lds r25, SecondCounter+1

adiw r25:r24, 1 ; Increase the second counter by one.

; continued

54

Example 3
sts SecondCounter, r24

sts SecondCounter+1, r25

rjmp EndIF

NotSecond:

; Store the new value of the temporary counter.

sts TempCounter, r24

sts TempCounter+1, r25

EndIF:

pop r24 ; Epilogue starts;

pop r25 ; Restore all conflict registers from the stack.

pop YL

pop YH

pop temp

out SREG, temp

reti ; Return from the interrupt.
; continued

55

Example 3

main:

ldi leds, 0xFF

out PORTC, leds

ldi leds, PATTERN

clear TempCounter ; Initialize the temporary counter to 0

clear SecondCounter ; Initialize the second counter to 0

ldi temp, 0b00000000

out TCCR0A, temp

ldi temp, 0b00000010

out TCCR0B, temp ; Prescaling value=8

ldi temp, 1<<TOIE0 ; = 128 microseconds

sts TIMSK0, temp ; T/C0 interrupt enable

sei ; Enable global interrupt

loop: rjmp loop ; loop forever

56

Reading Material

⚫ Chapter 8: Interrupts and Real-Time Events.

Microcontrollers and Microcomputers by

Fredrick M. Cady.

⚫ Mega2560 Data Sheet.

⚫ External Interrupts.

⚫ Timer0

57

Homework

1. What do you need to do to set up an Timer0

Output Compare Match Interrupt?

58

Homework

2. Based on the Example 1 in this week lecture

slides, implement a software interrupt such

that when there is an overflow in the counter

that counts the number of LED toggles, all

LEDs are turned on.

