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Interrupts

Lecturer: Sri Parameswaran

Notes by: Annie Guo
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CPU Interacts with I/O

Two approaches:

⚫ Polling

⚫ Software queries I/O devices.

⚫ No extra hardware needed.

⚫ Not efficient.  

⚫ CPU may waste processor cycles to query a device even if it 

does not need any service.

⚫ Interrupts

⚫ I/O devices generate signals to request services from CPU .

⚫ Need special hardware to implement interrupt services.

⚫ Efficient.

⚫ A signal is generated only if the I/O device needs services from 

CPU. 
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Interrupt Systems

⚫ An interrupt system implements interrupt 

services

⚫ It basically performs three tasks:

⚫ Recognize interrupt events

⚫ Respond to the interrupts

⚫ Resume normal programmed task
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Recognize Interrupt Events

⚫ Interrupt events

⚫ Associated with interrupt signals: 

⚫ In different forms, including levels and edges.

⚫ Can be multiple and synchronous

⚫ Namely, there may be many sources to generate an 

interrupts; a number of interrupts can be generated at 

the same time.

⚫ Approaches are required to:

⚫ Identify an interrupt event among multiple sources

⚫ Determine which interrupts to serve if there are 

multiple simultaneous interrupts
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Respond to Interrupts

⚫ Handling interrupt

⚫ Wait for the current instruction to finish.

⚫ Acknowledge the interrupting device.

⚫ Branch to the correct interrupt service routine

(interrupt handler) to service interrupting device.
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Resume Normal Task

⚫ Return to the interrupted program at the point 

it was interrupted.
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Interrupt Process Control

⚫ Interrupts can be enabled or disabled

⚫ Can be controlled in two ways:

⚫ Software control

⚫ Allow programmers to enable and disable selected/all 

interrupts.

⚫ Hardware control 

⚫ Disable further interrupts while an interrupt is being 

serviced
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Transferring Control to 

Interrupt Service Routine

⚫ Hardware needs to save the return address.
⚫ Most processors save the return address on the stack.

⚫ Hardware may also save some registers such as 
program status register. 
⚫ AVR does not save any registers. It is the programmers’ 

responsibility to save the program status register and 
conflict registers.

⚫ The delay from the time the IRQ is generated by the 
interrupting device to the time the Interrupt Service 
Routine (ISR) starts to execute is called interrupt 
latency.
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Interrupt Service Routine

⚫ A sequence of code to be executed when the 
corresponding interrupt is responded by CPU.

⚫ Interrupt service routine is a special subroutine, 
therefore can be constructed with three parts:
⚫ Prologue: 

⚫ Code for saving conflict registers on the stack.

⚫ Body: 

⚫ Code for doing the required task. 

⚫ Epilogue:

⚫ Code for restoring all saved registers from the stack.

⚫ The last instruction is the return-from-interrupt instruction. 



10

Software Interrupt

⚫ Software interrupt is the interrupt generated by 

software without a hardware-generated-IRQ.

⚫ Software interrupt is typically used to implement 

system calls in OS. 

⚫ Some processors have a special machine 

instruction to generate software interrupt.

⚫ SWI in ARM.

⚫ AVR does NOT provide a software interrupt 

instruction.  

⚫ Programmers can use External Interrupts to implement 

software interrupts.
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Exceptions 

⚫ Abnormalities that occur during the normal 

operation of the processor.

⚫ Examples are internal bus error, memory access 

error and attempts to execute illegal instructions.

⚫ Some processors handle exceptions in the 

same way as interrupts.

⚫ AVR does not handle exceptions.
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Reset 

⚫ Reset is a type of interrupt present in most 

processors (including AVR).

⚫ Non-maskable.  

⚫ It does not do other interrupt processes, such 

as saving conflict registers. It initializes the 

system to some initial state.
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AVR Interrupts
⚫ Basically can be divided into internal and external 

interrupts

⚫ Each has a dedicated interrupt vector

⚫ Hardware is used to recognize interrupts

⚫ To enable an interrupt, two control bits must be set
⚫ the Global Interrupt Enable bit (I bit) in the Status Register 

⚫ Using sei

⚫ the enable bit for that interrupt

⚫ To disable all maskable interrupts, reset the I bit in 
SREG
⚫ Using cli instruction

⚫ Priority of interrupts is used to handle multiple 
simultaneous interrupts
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Set Global Interrupt Flag

⚫ Syntax:           sei

⚫ Operands:      none

⚫ Operation:      I  1. 

⚫ Sets the global interrupt flag (I) in SREG. The 
instruction following SEI will be executed before 
any pending interrupts. 

⚫ Words:            1 

⚫ Cycles:            1

⚫ Example:
sei ; set global interrupt enable

sleep ; enter sleep state, waiting for an interrupt
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Clear Global Interrupt Flag
⚫ Syntax:           cli

⚫ Operands:      none

⚫ Operation:      I  0

⚫ Clears the Global interrupt flag in SREG. 
Interrupts will be immediately disabled. 

⚫ Words:            1 

⚫ Cycles:            1

⚫ Example:
in r18, SREG ; store SREG value 

cli ; disable interrupts

; do something very important here

out SREG, r18 ; restore SREG value
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Interrupt Response Time

⚫ The interrupt execution response for all the 

enabled AVR interrupts is basically five clock 

cycles minimum. 

⚫ For saving the Program Counter (2 clock cycles)

⚫ For jumping to the interrupt routine (3 clock 

cycles)
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Interrupt Vectors

⚫ Each interrupt has a 4-byte (2-word) interrupt vector, 

containing an instruction to be executed after MCU 

has accepted the interrupt.

⚫ The lowest addresses in the program memory space 

are by default defined as the section for Interrupt 

Vectors.

⚫ The priority of an interrupt is based on the position 

of its vector in the program memory

⚫ The lower the address the higher is the priority level.

⚫ RESET has the highest priority
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Interrupt Vectors in Mega2560 
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Interrupt Vectors in Mega2560 

(cont.) 
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Interrupt Vectors in Mega2560 

(cont.) 
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Interrupt Vectors in Mega2560 

(cont.) 
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Interrupt Process

⚫ When an interrupt occurs, the Global Interrupt 

Enable I-bit is cleared and all interrupts are disabled. 

⚫ The interrupt routine can set the I-bit to allow nested 

interrupts

⚫ The I-bit is automatically set when a Return from 

Interrupt instruction – RETI – is executed.

⚫ When the AVR exits from an interrupt, it will always 

return to the main program and execute one more 

instruction before any pending interrupt is served.

⚫ Reset interrupt is an exception
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Initialization of Interrupt Vector 

Table in Mega2560 

⚫ Typically an interrupt vector  contains a 

branch instruction (JMP or RJMP) that 

branches to the first instruction of the 

interrupt service routine.  

⚫ Or simply RETI  (return-from-interrupt) if you 

don’t handle this interrupt.  
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Example of IVT Initialization in 

Mega2560 

.include "m2560def.inc"

.cseg

.org 0x0000 ; Reset vector is at address 0x0000

rjmp RESET ; Jump to the start of Reset interrupt service routine  

; Relative jump is used assuming RESET is not far 

.org INT0addr ; Addresses of vectors are defined in m2560def.inc

jmp IRQ0 ; Long jump is used assuming IRQ0 is very far away 

.org INT1addr

reti ; Return to the break point without handling the interrupt

…

RESET: ; The interrupt service routine for RESET starts here.   

…

IRQ0: ; The interrupt service routine for IRQ0 starts here. 
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External Interrupts

⚫ The external interrupts are triggered by the 

INT7:0 pins. 

⚫ If enabled, the interrupts will trigger even if the 

INT7:0 are configured as outputs 

⚫ This feature provides a way of generating a software 

interrupt.

⚫ Can be triggered by a falling or rising edge or a 

logic level

⚫ Specified in External Interrupt Control Register

▪ EICRA (for INT3:0)

▪ EICRB (for INT7:4)
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External Interrupts (cont.)

⚫ To enable an interrupt, two bits must be set

⚫ I bit in SREG

⚫ INTx bit in EIMSK

⚫ To activate an interrupt, the following must be 

met:

⚫ The interrupt must be enabled

⚫ The associated external pin must have a 

designed signal asserted.
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EIMSK

⚫ External Interrupt Mask Register

⚫ A bit is set to enable the related interrupt
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EICRA
⚫ External Interrupt Control Register A

⚫ For INT0-3

⚫ Defines the type of signals that activates the external 

Interrupt

⚫ on rising or falling edge or level sensed.
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EICRB
⚫ External Interrupt Control Register B

⚫ For INT4-7

⚫ Defines the type of signals that activates the External 

Interrupt

⚫ on rising or falling edge or level sensed.
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EIFR

⚫ Interrupt flag register

⚫ A bit is set when an event-triggered interrupt is 

enabled and the related event on the related INT 

pin happens. 

⚫ Event-triggered interrupt: signal edge activated.
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Example 1

⚫ Design a system, where the state of LEDs 

toggles under the control of the user.
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Example 1 (solution)

⚫ Use an external interrupt

⚫ Connect the external interrupt pin to a push button

⚫ When the button pressed, the interrupt is generated

⚫ In the assembly code

⚫ Set up the interrupt

⚫ Set up the interrupt vector

⚫ Enable the interrupt

⚫ Write a service routine for this interrupt

⚫ Change the display pattern

⚫ Write the pattern to the port connected to the LEDs
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Code for Example 1
.include "m2560def.inc“

.def temp =r16

.def output = r17

.def count = r18

.equ PATTERN = 0b01010101

; set up interrupt vectors
jmp RESET

.org INT0addr
jmp EXT_INT0

RESET:
ldi temp, low(RAMEND) ; initialize stack
out SPL, temp
ldi temp, high(RAMEND)
out SPH, temp

ser temp ; set Port C as output
out DDRC, temp
out PORTC, temp
ldi output, PATTERN

; continued
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Code for Example 1
; continued

ldi temp, (2 << ISC00) ; set INT0 as falling-
sts EICRA, temp          ; edge triggered interrupt

in temp, EIMSK ; enable INT0
ori temp, (1<<INT0)
out EIMSK, temp

sei ; enable Global Interrupt
jmp main

EXT_INT0:
push temp ; save register
in temp, SREG ; save SREG
push temp

com output ; flip the pattern
out PORTC, output
inc count

pop temp ; restore SREG
out SREG, temp
pop temp ; restore register
reti
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Code for Example 1
; continued 

; main - does nothing but increment a counter
main:

clr count
clr temp

loop:
inc temp ; a dummy task in main
rjmp loop



37

Timer/Counters

⚫ Simply binary counters

⚫ Used in two different modes:
⚫ Timer

⚫ Counting time periods

⚫ Counter

⚫ Counting the events or pulse or something of this nature

⚫ Can be used to
⚫ Measure time periods, speed, frequency

⚫ Generate PWM signals

⚫ Schedule real-time tasks

⚫ etc. 
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Timer/Counters in AVR

⚫ In AVR, there are 8-bit and 16-bit 

timer/counters.

⚫ Timer 0 and Timer 2: 8-bit

⚫ Timer 1,3-5 16-bit
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8-bit Timer/Counter Block 

Diagram
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8-bit Timer/Counter

⚫ The counter can be initialized with

⚫ 0 (controlled by reset)

⚫ a number (controlled by count signal)

⚫ Can count up or down 

⚫ controlled by direction signal

⚫ Those controlled signals are generated by hardware control 
logic

⚫ The control logic is further controlled by programmer by

⚫ Writing control bits into TCCRnA/TCCRnB

⚫ Output

⚫ Overflow interrupt request bit

⚫ Output Compare interrupt request bit

⚫ OCn bit:  Output Compare bit for waveform generation 
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TIMSK0

⚫ Timer/Counter Interrupt Mask Register

⚫ Set TOIE0 (and I-bit in SREG) to enable the 

Overflow Interrupt

⚫ Set OCIE0(A/B) (and I bit in SREG) to enable 

Compare Match Interrupt

Control bits for timer/counter0
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TIFR0
⚫ Timer/Counter Interrupt Flag Register

⚫ OCF0(A/B) bit is set when a Compare Match between the 

counter and the data in OCR0(A/B) (Output Compare 

Registers). 

⚫ When (I=1)&&(OCIE0(A/B)=1)&&(OCF0(A/B)=1), the 

related Timer/Counter Compare Match Interrupt is 

executed.

⚫ OCF0(A/B) bit is cleared by hardware when the related 

interrupt is handled or can be cleared by writing a logic 0 to 

the flag

Interrupt control bits for timer/counter0
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TIFR0 (cont.)
⚫ Timer/Counter Interrupt Flag Register

⚫ TOV0 bit is set when an overflow occurs in the counter.

⚫ When (I=1)&&(TOIE0=1)&&(TOV0=1), the related 

Timer/Counter Overflow Interrupt is executed.

⚫ In PWM mode, this bit is set when the counter changes 

counting direction at 0x00

⚫ OCF0(A/B) bit is cleared by hardware when the related 

interrupt is handled or can be cleared by writing a logic 0 to 

the flag

Interrupt control bits for timer/counter0
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TCCR0A/B

⚫ Timer Counter Control Register

⚫ For Timer/Counter0

⚫ Similar registers for other timers
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TCCR0 Bit Description

⚫ COM0xn/WGM0n/FOC0

⚫ Control the mode of operation

⚫ The behavior of the Timer/Counter and the output, is defined by 

the combination of the Waveform Generation mode (WGM02:00) 

and Compare Output mode (COM0x1:0) bits.

⚫ The simplest mode of operation is the Normal Mode (WGM02:00 

=00). In this mode the counting direction is always up. The 

counter rolls over when it passes its maximum 8-bit value (TOP = 

0xFF) and then restarts from the bottom (0x00).

⚫ Refer to Mega2560 Data Sheet (pages 118~194) for details.
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TCCR0 Bit Description (cont.)
⚫ Bit 2:0 in TCCR0B

⚫ Control the clock selection
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Example 2

⚫ Implement a scheduler that can execute a 

task every one second. 
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Example 2 (solution)

⚫ Use Timer0 to count the time

⚫ Let’s set Timer0 prescaler to 8

⚫ The time-out for the setting should be
▪ 256*(clock period) = 256*8/(16 MHz)

= 128 us

▪ Namely, we can set the Timer0 overflow interrupt that is to occur every 
128 us.

▪ Note, Clktos = 1/16 MHz (obtained from the data sheet)

⚫ For one second, there are 
▪ 1000000/128 = ~7812 interrupts

⚫ In code,

⚫ Set Timer0 interrupt to occur every 128 microseconds

⚫ Use a counter to count to 7812 interrupts for counting 1 second

⚫ To observe the 1 second time period, toggle an LED every 
second.
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Example 3
; This program implements a timer that counts one second using 

; Timer0 interrupt

.include "m2560def.inc"

.equ PATTERN = 0b11110000

.def temp = r16

.def leds = r17

; The macro clears a word (2 bytes) in a memory

; the parameter @0 is the memory address for that word

.macro clear

ldi YL, low(@0) ; load the memory address to Y 

ldi YH, high(@0)     

clr temp

st Y+, temp ; clear the two bytes at @0 in SRAM

st Y, temp                

.endmacro

; contined
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Example 3
; continued
.dseg
SecondCounter:

.byte 2               ; Two-byte counter for counting seconds.
TempCounter: 

.byte 2               ; Temporary counter. Used to determine 
; if one second has passed

.cseg

.org 0x0000 
jmp RESET       
jmp DEFAULT     ; No handling for IRQ0.
jmp DEFAULT      ; No handling for IRQ1.

.org OVF0addr
jmp Timer0OVF         ; Jump to the interrupt handler for

; Timer0 overflow.
…
jmp DEFAULT      ; default service for all other interrupts.   

DEFAULT:  reti       ; no service
; continued
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Example 3

; continued

RESET: ldi temp, high(RAMEND)    ; Initialize stack pointer 

out SPH, temp 

ldi temp, low(RAMEND)

out SPL, temp  

ser temp ; set Port C as output

out DDRC, temp

rjmp main 

; continued
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Example 3

; continued

Timer0OVF: ; interrupt subroutine to Timer0

in temp, SREG

push temp ; Prologue starts.

push YH ; Save all conflict registers in the prologue.

push YL

push r25

push r24 ; Prologue ends.

; Load the value of the temporary counter.

lds r24, TempCounter

lds r25, TempCounter+1

adiw r25:r24, 1  ; Increase the temporary counter by one.

; continued
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Example 3

cpi r24, low(7812) ; Check if (r25:r24) = 7812

ldi  temp, high(7812) ; 7812 = 106/128

cpc r25, temp

brne  NotSecond

com leds

out PORTC, leds

clear TempCounter ; Reset the temporary counter.

; Load the value of the second counter.

lds r24, SecondCounter

lds r25, SecondCounter+1

adiw r25:r24, 1 ; Increase the second counter by one.

; continued
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Example 3
sts SecondCounter, r24

sts SecondCounter+1, r25

rjmp EndIF

NotSecond:

; Store the new value of the temporary counter.

sts TempCounter, r24

sts TempCounter+1, r25

EndIF:

pop r24 ; Epilogue starts;

pop r25 ; Restore all conflict registers from the stack. 

pop YL

pop YH

pop temp

out SREG, temp

reti ; Return from the interrupt.
; continued
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Example 3

main:

ldi leds, 0xFF

out PORTC, leds

ldi leds, PATTERN

clear TempCounter ; Initialize the temporary counter to 0 

clear SecondCounter ; Initialize the second counter to 0

ldi temp, 0b00000000

out TCCR0A, temp

ldi temp, 0b00000010

out TCCR0B, temp ; Prescaling value=8

ldi temp,  1<<TOIE0 ; = 128 microseconds   

sts TIMSK0, temp ; T/C0 interrupt enable 

sei ; Enable global interrupt

loop: rjmp loop ; loop forever
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Reading Material

⚫ Chapter 8: Interrupts and Real-Time Events. 

Microcontrollers and Microcomputers by 

Fredrick M. Cady.

⚫ Mega2560 Data Sheet.  

⚫ External Interrupts. 

⚫ Timer0
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Homework

1. What do you need to do to set up an Timer0 

Output Compare Match Interrupt?
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Homework

2.  Based on the Example 1 in this week lecture 

slides, implement a software interrupt such 

that when there is an overflow in the counter 

that counts the number of LED toggles, all 

LEDs are turned on.


