
2b. Kernel Lower Bounds

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2018

Contents

1 Introduction 1

2 Compositions 2

3 Polynomial Parameter Transformations 3

4 Further Reading 4

1 Introduction

Polynomial vs. exponential kernels

• For some FPT problems, only exponential kernels are known.

• Could it be that all FPT problems have polynomial kernels?

• We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would con-
tradict complexity-theoretic assumptions.

Intuition by example

Long Path
Input: A graph G = (V,E), and an integer k ≤ |V |.
Parameter: k
Question: Does G have a path of length at least k (as a subgraph)?

Long Path is NP-complete but FPT.

• Assume Long Path has a kc kernel, where c = O(1).

• Set q = kc + 1 and consider q instances with the same parameter k:

(G1, k), (G2, k), . . . , (Gq, k).

• Let G = G1 ⊕G2 ⊕ · · · ⊕Gq be the disjoint union of all these graphs.

• Note that (G, k) is a Yes-instance if and only if at least one of (Gi, k), 1 ≤ i ≤ q, is a Yes-instance.

• Kernelizing (G, k) gives an instance of size kc, i.e., on average less than one bit per original instance.

• “The kernelization must have solved at least one of the original NP-hard instances in polynomial time”.

• Note that this is not a rigorous argument, and we will make this more formal now.

1

2 Compositions

Distillation

Definition 1. Let Π1,Π2 be two problems. An OR-distillation (resp., AND-distillation) from Π1 into Π2 is a
polynomial time algorithm D whose input is a sequence I1, . . . , Iq of instances for Π1 and whose output is an
instance I ′ for Π2 such that

• |I ′| ≤ poly(max1≤i≤q |Ii|), and

• I ′ is a Yes-instance for Π2 if and only if for at least one (resp., for each) i ∈ {1, . . . , q} we have that Ii is a
Yes-instance for Π1.

NP-complete problems don’t have distillations

Theorem 2 ([Fortnow, Santhanam, 2008]). If any NP-complete problem has an OR-distillation, then coNP ⊆
NP/poly. 1

Note: coNP ⊆ NP/poly is not believed to be true and it would imply that the polynomial hierarchy collapses to
the third level: PH ⊆ Σp

3.

Theorem 3 ([Drucker, 2012]). If any NP-complete problem has an AND-distillation, then coNP ⊆ NP/poly.

Composition algorithms

Definition 4. Let Π be a parameterized problem. An OR-composition (resp., AND-composition) of Π is a poly-
nomial time algorithm A that receives as input a finite sequence I1, . . . , Iq of Π with parameters k1 = · · · = kq = k
and outputs an instance I ′ for Π with parameter k′ such that

• k′ ≤ poly(k), and

• I ′ is a Yes-instance for Π if and only if for at least one (resp., for each) i ∈ {1, . . . , q}, Ii is a Yes-instance
for Π.

Tool for showing kernel lower bounds

Theorem 5 (Composition Theorem). Let Π be an NP-complete parameterized problem such that for each instance
I of Π with parameter k, the value of the parameter k can be computed in polynomial time and k ≤ |I|. If Π has
an OR-composition or an AND-composition, then Π has no polynomial kernel, unless coNP ⊆ NP/poly.

Proof sketch. Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-
distillation from Π into OR(Π)/AND(Π).

I1 I2 . . . Iq q instances of size ≤ n = max
1≤i≤q

|Ii|

{Ii : ki = 0} . . . {Ii : ki = n} group by parameter

I ′0 I ′1 . . . I ′n After OR-composition: n+ 1 instances with k′i ≤ poly(n)

I ′′0 I ′′1 . . . I ′′n After kernelization: n+ 1 instances of size poly(n) each

This is an instance of OR(Π) of size poly(n).

Long Path has no polynomial kernel

Theorem 6. Long Path has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. Clearly, k can be computed in polynomial time and k ≤ |V |. We give an OR-composition for Long Path,
which will prove the theorem by the previous lemma. It receives as input a sequence of instances for Long Path:
(G1, k), . . . , (Gq, k), and it produces the instance (G1 ⊕ · · · ⊕Gq, k), which is a Yes-instance if and only if at least
one of (G1, k), . . . , (Gq, k) is a Yes-instance.

1NP/poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the
following property: for every n ≥ 0, there is an advice string A of length poly(n) such that, for every input I of length n, the machine
M correctly decides the problem with input I, given I and A.

2

var-SAT has no poly kernel

var-SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

Example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

or

{{x1, x2}, {¬x2, x3,¬x4}, {x1, x4}, {¬x1,¬x3,¬x4}}

Theorem 7. var-SAT has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. Clearly, var(F) can be computed in polynomial time and n = |var(F)| ≤ |F |. We give an OR-composition
for var-SAT, which will prove the theorem by the previous lemma.

• Let F1, . . . , Fq be CNF formulas, |Fi| ≤ m, |var(Fi)| = n.

• We can decide whether one of the formulas is satisfiable in time poly(mt2n). Hence, if q > 2n, the check is
polynomial. If some formula is satisfiable, we output this formula, otherwise we output F1.

• It remains the case q ≤ 2n. We assume var(F1) = · · · = var(Fq), otherwise we change the names of variables.

• Let s = dlog2 qe. Since q ≤ 2n, we have that s ≤ n.

• We take a set Y = {y1, . . . , ys} of new variables. Let C1, . . . , C2s be the sequence of all 2s possible clauses
containing exactly s literals over the variables in Y .

• For 1 ≤ i ≤ q we let F ′i = {C ∪ Ci : C ∈ Fi}.

• We define F =
⋃q

i=1 F
′
i ∪ {Ci : q + 1 ≤ i ≤ 2s}.

• Claim: F is satisfiable if and only if Fi is satisfiable for some 1 ≤ i ≤ q.

• Hence we have an OR-composition.

3 Polynomial Parameter Transformations

Another tool for showing kernel lower bounds

Definition 8. Let Π1,Π2 be parameterized problems. A polynomial parameter transformation from Π1 to Π2 is a
polynomial time algorithm, which, for any instance I1 of Π1 with parameter k1, produces an equivalent instance
I2 of Π2 with parameter k2 such that k2 ≤ poly(k1).

Theorem 9. Let Π1,Π2 be parameterized problems such that Π1 is NP-complete, Π2 is in NP, and there is a
polynomial parameter transformation from Π1 to Π2. If Π2 has a polynomial kernel, then Π1 has a polynomial
kernel.

Remark: If we know that an NP-complete parameterized problem Π1 has no polynomial kernel (unless NP ⊆
coNP/poly), we can use the theorem to show that some other NP-complete parameterized problem Π2 has no
polynomial kernel (unless NP ⊆ coNP/poly) by giving a polynomial parameter transformation from Π1 to Π2.

Proof. • We show that under the assumptions of the theorem Π1 has a polynomial kernel.

• Let I1 be an instance of Π1 with parameter k1.

• We obtain in polynomial time an equivalent instance I2 of Π2 with parameter k2 ≤ poly(k1).

3

• We apply Π2’s kernelization and obtain I ′2 of size ≤ poly(k1).

• Since Π2 is in NP and Π1 is NP-complete, there exists a polynomial time reduction that maps I ′2 to an
equivalent instance I ′1 of Π1.

• The size of I ′1 is polynomial in k1.

2CNF-Backdoor Evaluation

Definition 10. A CNF formula F is a 2CNF formula if each clause of F has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 11. A 2CNF-backdoor of a CNF formula F is a set of variables B ⊆ var(F) such that for each assignment
α : B → {0, 1}, the formula F [α] is a 2CNF formula. Here, F [α] is obtained by removing all clauses containing a
literal set to 1 by α, and removing the literals set to 0 from all remaining clauses.

2CNF-Backdoor Evaluation
Input: A CNF formula F and a 2CNF-backdoor B of F
Parameter: k = |B|
Question: Is F satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.

Theorem 12. 2CNF-Backdoor Evaluation has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from var-SAT to 2CNF-Backdoor Evaluation. Let F
be an instance for var-SAT. Then, (F,B = var(F)) is an equivalent instance for 2CNF-Backdoor Evaluation
with |B| ≤ |var(F)|.

4 Further Reading

• Chapter 15, Lower bounds for kernelization in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lok-
shtanov, Dániel Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

• Chapter 30 (30.1–30.4), Kernelization Lower Bounds in Rodney G. Downey and Michael R. Fellows. Funda-
mentals of Parameterized Complexity. Springer, 2013.

• Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on kernelization. Discrete Optimiza-
tion 8(1): 110-128 (2011).

4

	Introduction
	Compositions
	Polynomial Parameter Transformations
	Further Reading

