2b. Kernel Lower Bounds COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2018

Contents

1	Introduction	1
2	Compositions	2
3	Polynomial Parameter Transformations	3
4	Further Reading	4

1 Introduction

Polynomial vs. exponential kernels

- For some FPT problems, only exponential kernels are known.
- Could it be that all FPT problems have polynomial kernels?
- We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would contradict complexity-theoretic assumptions.

Intuition by example

Long Path	
Input:	A graph $G = (V, E)$, and an integer $k \leq V $.
Parameter:	k
Question:	Does G have a path of length at least k (as a subgraph)?

LONG PATH is NP-complete but FPT.

- Assume LONG PATH has a k^c kernel, where c = O(1).
- Set $q = k^c + 1$ and consider q instances with the same parameter k:

$$(G_1, k), (G_2, k), \dots, (G_q, k).$$

- Let $G = G_1 \oplus G_2 \oplus \cdots \oplus G_q$ be the disjoint union of all these graphs.
- Note that (G, k) is a YES-instance if and only if at least one of $(G_i, k), 1 \le i \le q$, is a YES-instance.
- Kernelizing (G, k) gives an instance of size k^c , i.e., on average less than one bit per original instance.
- "The kernelization must have solved at least one of the original NP-hard instances in polynomial time".
- Note that this is not a rigorous argument, and we will make this more formal now.

2 Compositions

Distillation

Definition 1. Let Π_1, Π_2 be two problems. An *OR-distillation* (resp., *AND-distillation*) from Π_1 into Π_2 is a polynomial time algorithm D whose input is a sequence I_1, \ldots, I_q of instances for Π_1 and whose output is an instance I' for Π_2 such that

- $|I'| \leq \operatorname{poly}(\max_{1 \leq i \leq q} |I_i|)$, and
- I' is a YES-instance for Π_2 if and only if for at least one (resp., for each) $i \in \{1, \ldots, q\}$ we have that I_i is a YES-instance for Π_1 .

NP-complete problems don't have distillations

Theorem 2 ([Fortnow, Santhanam, 2008]). If any NP-complete problem has an OR-distillation, then coNP \subseteq NP/poly.¹

Note: coNP \subseteq NP/poly is not believed to be true and it would imply that the polynomial hierarchy collapses to the third level: PH $\subseteq \Sigma_3^p$.

Theorem 3 ([Drucker, 2012]). If any NP-complete problem has an AND-distillation, then $coNP \subseteq NP/poly$.

Composition algorithms

Definition 4. Let Π be a parameterized problem. An *OR-composition* (resp., *AND-composition*) of Π is a polynomial time algorithm A that receives as input a finite sequence I_1, \ldots, I_q of Π with parameters $k_1 = \cdots = k_q = k$ and outputs an instance I' for Π with parameter k' such that

- $k' \leq \mathsf{poly}(k)$, and
- I' is a YES-instance for Π if and only if for at least one (resp., for each) $i \in \{1, \ldots, q\}$, I_i is a YES-instance for Π .

Tool for showing kernel lower bounds

Theorem 5 (Composition Theorem). Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq |I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless coNP \subseteq NP/poly.

Proof sketch. Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-distillation from Π into OR(Π)/AND(Π).

 $\begin{array}{ccccc} I_1 & I_2 & \dots & I_q & q \text{ instances of size } \leq n = \max_{1 \leq i \leq q} |I_i| \\ \{I_i : k_i = 0\} \dots \{I_i : k_i = n\} & \text{group by parameter} \\ I'_0 & I'_1 & \dots & I'_n & \text{After OR-composition: } n+1 \text{ instances with } k'_i \leq \mathsf{poly}(n) \\ I''_0 & I''_1 & \dots & I''_n & \text{After kernelization: } n+1 \text{ instances of size } \mathsf{poly}(n) \text{ each} \\ & \text{This is an instance of OR}(\Pi) \text{ of size } \mathsf{poly}(n). \end{array}$

Long Path has no polynomial kernel

Theorem 6. LONG PATH has no polynomial kernel unless NP \subseteq coNP/poly.

Proof. Clearly, k can be computed in polynomial time and $k \leq |V|$. We give an OR-composition for LONG PATH, which will prove the theorem by the previous lemma. It receives as input a sequence of instances for LONG PATH: $(G_1, k), \ldots, (G_q, k)$, and it produces the instance $(G_1 \oplus \cdots \oplus G_q, k)$, which is a YES-instance if and only if at least one of $(G_1, k), \ldots, (G_q, k)$ is a YES-instance.

¹NP/poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the following property: for every $n \ge 0$, there is an *advice* string A of length poly(n) such that, for every input I of length n, the machine M correctly decides the problem with input I, given I and A.

var-SAT has no poly kernel

var-SAT	
Input:	A propositional formula F in conjunctive normal form (CNF)
Parameter:	n = var(F) , the number of variables in F
Question:	Is there an assignment to $var(F)$ satisfying all clauses of F ?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

or

$$\{\{x_1, x_2\}, \{\neg x_2, x_3, \neg x_4\}, \{x_1, x_4\}, \{\neg x_1, \neg x_3, \neg x_4\}\}$$

Theorem 7. var-SAT has no polynomial kernel unless NP \subseteq coNP/poly.

Proof. Clearly, var(F) can be computed in polynomial time and $n = |var(F)| \le |F|$. We give an OR-composition for var-SAT, which will prove the theorem by the previous lemma.

- Let F_1, \ldots, F_q be CNF formulas, $|F_i| \le m$, $|\mathsf{var}(F_i)| = n$.
- We can decide whether one of the formulas is satisfiable in time $poly(mt2^n)$. Hence, if $q > 2^n$, the check is polynomial. If some formula is satisfiable, we output this formula, otherwise we output F_1 .
- It remains the case $q \leq 2^n$. We assume $var(F_1) = \cdots = var(F_q)$, otherwise we change the names of variables.
- Let $s = \lceil \log_2 q \rceil$. Since $q \leq 2^n$, we have that $s \leq n$.
- We take a set $Y = \{y_1, \ldots, y_s\}$ of new variables. Let C_1, \ldots, C_{2^s} be the sequence of all 2^s possible clauses containing exactly s literals over the variables in Y.
- For $1 \le i \le q$ we let $F'_i = \{C \cup C_i : C \in F_i\}.$
- We define $F = \bigcup_{i=1}^{q} F'_i \cup \{C_i : q+1 \le i \le 2^s\}.$
- Claim: F is satisfiable if and only if F_i is satisfiable for some $1 \le i \le q$.
- Hence we have an OR-composition.

3 Polynomial Parameter Transformations

Another tool for showing kernel lower bounds

Definition 8. Let Π_1, Π_2 be parameterized problems. A *polynomial parameter transformation* from Π_1 to Π_2 is a polynomial time algorithm, which, for any instance I_1 of Π_1 with parameter k_1 , produces an **equivalent** instance I_2 of Π_2 with parameter k_2 such that $k_2 \leq \mathsf{poly}(k_1)$.

Theorem 9. Let Π_1, Π_2 be parameterized problems such that Π_1 is NP-complete, Π_2 is in NP, and there is a polynomial parameter transformation from Π_1 to Π_2 . If Π_2 has a polynomial kernel, then Π_1 has a polynomial kernel.

Remark: If we know that an NP-complete parameterized problem Π_1 has no polynomial kernel (unless NP \subseteq coNP/poly), we can use the theorem to show that some other NP-complete parameterized problem Π_2 has no polynomial kernel (unless NP \subseteq coNP/poly) by giving a polynomial parameter transformation from Π_1 to Π_2 .

Proof. • We show that under the assumptions of the theorem Π_1 has a polynomial kernel.

- Let I_1 be an instance of Π_1 with parameter k_1 .
- We obtain in polynomial time an equivalent instance I_2 of Π_2 with parameter $k_2 \leq \mathsf{poly}(k_1)$.

- We apply Π_2 's kernelization and obtain I'_2 of size $\leq \mathsf{poly}(k_1)$.
- Since Π_2 is in NP and Π_1 is NP-complete, there exists a polynomial time reduction that maps I'_2 to an equivalent instance I'_1 of Π_1 .
- The size of I'_1 is polynomial in k_1 .

2CNF-Backdoor Evaluation

Definition 10. A CNF formula F is a 2CNF formula if each clause of F has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 11. A 2CNF-backdoor of a CNF formula F is a set of variables $B \subseteq var(F)$ such that for each assignment $\alpha : B \to \{0, 1\}$, the formula $F[\alpha]$ is a 2CNF formula. Here, $F[\alpha]$ is obtained by removing all clauses containing a literal set to 1 by α , and removing the literal set to 0 from all remaining clauses.

Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.

Theorem 12. 2CNF-BACKDOOR EVALUATION has no polynomial kernel unless NP \subseteq coNP/poly.

Proof. We give a polynomial parameter transformation from var-SAT to 2CNF-BACKDOOR EVALUATION. Let F be an instance for var-SAT. Then, (F, B = var(F)) is an equivalent instance for 2CNF-BACKDOOR EVALUATION with $|B| \leq |var(F)|$.

4 Further Reading

- Chapter 15, Lower bounds for kernelization in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 30 (30.1–30.4), *Kernelization Lower Bounds* in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on kernelization. Discrete Optimization 8(1): 110-128 (2011).