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1 Introduction
Polynomial vs. exponential kernels

e For some FPT problems, only exponential kernels are known.
e Could it be that all FPT problems have polynomial kernels?

e We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would con-
tradict complexity-theoretic assumptions.

Intuition by example

LoNG PATH
Input: A graph G = (V, E), and an integer k < |V].
Parameter: k
Question:  Does G have a path of length at least k (as a subgraph)?

LONG PATH is NP-complete but FPT.

e Assume LONG PATH has a k¢ kernel, where ¢ = O(1).

e Set ¢ = k°+ 1 and consider ¢ instances with the same parameter k:

(G1,k),(Ga,k),...,(Gg, k).

o Let G =G ®G2® - ® G, be the disjoint union of all these graphs.

e Note that (G, k) is a YEs-instance if and only if at least one of (G;,k),1 < i < g, is a YES-instance.

e Kernelizing (G, k) gives an instance of size k¢, i.e., on average less than one bit per original instance.

e “The kernelization must have solved at least one of the original NP-hard instances in polynomial time”.

e Note that this is not a rigorous argument, and we will make this more formal now.



2 Compositions

Distillation

Definition 1. Let IT;,II5 be two problems. An OR-distillation (resp., AND-distillation) from II; into Il is a
polynomial time algorithm D whose input is a sequence Ii,...,1I; of instances for II; and whose output is an
instance I’ for II5 such that

o |I'| < poly(maX1§i§q |1;]), and

e [’ is a YEs-instance for Il if and only if for at least one (resp., for each) i € {1,...,q} we have that I; is a
YEs-instance for II;.

NP-complete problems don’t have distillations

Theorem 2 ([Fortnow, Santhanam, 2008]). If any NP-complete problem has an OR-distillation, then coNP C
NP /poly. E|

Note: coNP C NP/poly is not believed to be true and it would imply that the polynomial hierarchy collapses to
the third level: PH C X£.

Theorem 3 ([Drucker, 2012]). If any NP-complete problem has an AND-distillation, then coNP C NP /poly.

Composition algorithms

Definition 4. Let II be a parameterized problem. An OR-composition (resp., AND-composition) of II is a poly-
nomial time algorithm A that receives as input a finite sequence Iy, ..., I, of II with parameters ky =--- =k, =k
and outputs an instance I’ for I with parameter k' such that

e k' < poly(k), and

e ' is a YEs-instance for II if and only if for at least one (resp., for each) ¢ € {1,...,q}, I; is a YES-instance
for II.

Tool for showing kernel lower bounds

Theorem 5 (Composition Theorem). Let IT be an NP-complete parameterized problem such that for each instance
I of I with parameter k, the value of the parameter k can be computed in polynomial time and k < |I|. If I has
an OR-composition or an AND-composition, then I1 has no polynomial kernel, unless coNP C NP /poly.

Proof sketch. Suppose IT has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-
distillation from II into OR(II)/AND(II).

I I . I, ¢ instances of size <n = max |I;]
a 1<i<q

{Ii : k; =0}...{I; : ki =n} group by parameter
I, 5 . I, After OR-composition: n + 1 instances with &} < poly(n)
VO o I After kernelization: n + 1 instances of size poly(n) each
This is an instance of OR(II) of size poly(n).

Long Path has no polynomial kernel
Theorem 6. LONG PATH has no polynomial kernel unless NP C coNP /poly.

Proof. Clearly, k can be computed in polynomial time and k < |V|. We give an OR-composition for LONG PATH,
which will prove the theorem by the previous lemma. It receives as input a sequence of instances for LONG PATH:
(G1,k),...,(Gq, k), and it produces the instance (G1 @ - - - © G, k), which is a YEs-instance if and only if at least
one of (G1,k),...,(Gy, k) is a YES-instance. O

INP /poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the

following property: for every m > 0, there is an advice string A of length poly(n) such that, for every input I of length n, the machine
M correctly decides the problem with input I, given I and A.




var-SAT has no poly kernel

var-SAT
Input: A propositional formula F' in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F'?
Example:
(1 Vaa) A(maa VazVoxg) Al Vag) A(nxg V—xg Vo)
or

{{Ila 552}7 {_‘:L‘Qa Z3, _“L-l}a {‘Tlv ZL’4}, {_':Ela T3, _"L4}}
Theorem 7. var-SAT has no polynomial kernel unless NP C coNP /poly.

Proof. Clearly, var(F') can be computed in polynomial time and n = |var(F)| < |F|. We give an OR-composition
for var-SAT, which will prove the theorem by the previous lemma.

e Let F,..., F,; be CNF formulas, |F;| < m, |var(F;)| = n.

e We can decide whether one of the formulas is satisfiable in time poly(m#2™). Hence, if ¢ > 2", the check is
polynomial. If some formula is satisfiable, we output this formula, otherwise we output Fj.

e It remains the case ¢ < 2". We assume var(Fy) = - -- = var(Fy), otherwise we change the names of variables.
e Let s = [log, q]. Since ¢ < 27, we have that s < n.

e We take a set Y = {y1,...,ys} of new variables. Let Cy,...,Cas be the sequence of all 2° possible clauses
containing exactly s literals over the variables in Y.

e For1 <i<gqgwelet F/ ={CUC;:C € F;}.
e We define F = J_, F/U{C;:q+1<i<25}.
e Claim: F is satisfiable if and only if F; is satisfiable for some 1 < i < gq.

e Hence we have an OR-composition.

3 Polynomial Parameter Transformations

Another tool for showing kernel lower bounds

Definition 8. Let II;,IIs be parameterized problems. A polynomial parameter transformation from II; to Il is a
polynomial time algorithm, which, for any instance Iy of II; with parameter kq, produces an equivalent instance
I, of TI; with parameter ko such that ke < poly(ky).

Theorem 9. Let 1y, 1ls be parameterized problems such that 11y is NP-complete, 115 is in NP, and there is a
polynomial parameter transformation from Iy to Ily. If Tl has a polynomial kernel, then 11y has a polynomial
kernel.

Remark: If we know that an NP-complete parameterized problem II; has no polynomial kernel (unless NP C
coNP /poly), we can use the theorem to show that some other NP-complete parameterized problem Il has no
polynomial kernel (unless NP C coNP/poly) by giving a polynomial parameter transformation from II; to Ils.

Proof. e We show that under the assumptions of the theorem II; has a polynomial kernel.
e Let I; be an instance of II; with parameter k.

e We obtain in polynomial time an equivalent instance I of Il with parameter ko < poly(k1).



e We apply IIy’s kernelization and obtain I} of size < poly(k;).

e Since II is in NP and II; is NP-complete, there exists a polynomial time reduction that maps I to an
equivalent instance I of II;.

e The size of I] is polynomial in k.

2CNF-Backdoor Evaluation
Definition 10. A CNF formula F is a 2CNF formula if each clause of F' has at most 2 literals.
Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 11. A 2CNF-backdoor of a CNF formula F is a set of variables B C var(F') such that for each assignment
a: B — {0,1}, the formula F[a] is a 2CNF formula. Here, F[a] is obtained by removing all clauses containing a
literal set to 1 by «, and removing the literals set to 0 from all remaining clauses.

2CNF-BACKDOOR EVALUATION
Input: A CNF formula F' and a 2CNF-backdoor B of F
Parameter: k = |B|
Question: Is F satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.
Theorem 12. 2CNF-BACKDOOR EVALUATION has no polynomial kernel unless NP C coNP /poly.

Proof. We give a polynomial parameter transformation from var-SAT to 2CNF-BACKDOOR EVALUATION. Let F'
be an instance for var-SAT. Then, (F, B = var(F)) is an equivalent instance for 2CNF-BACKDOOR EVALUATION
with |B| < |var(F)|. O

4 Further Reading
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