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1 Parameterized Complexity Theory

Main Parameterized Complexity Classes
n: instance size
k: parameter

P: class of problems that can be solved in nO(1) time
FPT: class of parameterized problems that can be solved in f(k) · nO(1) time
W[·]: parameterized intractability classes
XP: class of parameterized problems that can be solved in f(k)·ng(k) time (“polynomial when k is a constant”)

P ⊆ FPT ⊆W[1] ⊆W[2] · · · ⊆W[P ] ⊆ XP

Note: We assume that f is computable and non-decreasing.

Polynomial-time reductions for parameterized problems?
A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

An independent set in a graph G = (V,E) is a subset of vertices S ⊆ V such that there is no edge uv ∈ E with
u, v ∈ S.

Independent Set
Input: Graph G, integer k
Parameter: k
Question: Does G have an independent set of size k?

• We know: Independent Set ≤P Vertex Cover

• However: Vertex Cover ∈ FPT but Independent Set is not known to be in FPT
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We will need another type of reductions

• Issue with polynomial-time reductions: parameter can change arbitrarily.

• We will want the reduction to produce an instance where the parameter is bounded by a function of the
parameter of the original instance.

• Also: we can allow the reduction to take FPT time instead of only polynomial time.

1.1 Parameterized reductions

Parameterized reduction

Definition 1. A parameterized reduction from a parameterized decision problem Π1 to a parameterized decision
problem Π2 is an algorithm, which, for any instance I of Π1 with parameter k produces an instance I ′ of Π2 with
parameter k′ such that

• I is a Yes-instance for Π1 ⇔ I ′ is a Yes-instance for Π2,

• there exists a computable function g such that k′ ≤ g(k), and

• there exists a computable function f such that the running time of the algorithm is f(k) · |I|O(1).

If there exists a parameterized reduction from Π1 to Π2, we write Π1 ≤FPT Π2.

Note: We can assume that f and g are non-decreasing.

New FPT algorithms via reductions

Lemma 2. If Π1,Π2 are parameterized decision problems such that Π1 ≤FPT Π2, then Π2 ∈ FPT implies Π1 ∈ FPT.

Proof sketch. To obtain an FPT algorithm for Π1, perform the reduction and then use an FPT algorithm for Π2

on the resulting instance.

1.2 Parameterized complexity classes

Boolean Circuits

Definition 3. A Boolean circuit is a directed acyclic graph with the nodes labeled as follows:

• every node of in-degree 0 is an input node,

• every node with in-degree 1 is a negation node (¬), and

• every node with in-degree ≥ 2 is either an AND-node (∧) or an OR-node (∨).

Moreover, exactly one node with out-degree 0 is also labeled the output node.
The depth of the circuit is the maximum length of a directed path from an input node to the output node.
The weft of the circuit is the maximum number of nodes with in-degree ≥ 3 on a directed path from an input node
to the output node.

Example

a b c d e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧
out

A depth-3, weft-1 Boolean circuit with inputs a, b, c, d, e.

2



Weighted Circuit Satisfiability
Given an assignment of Boolean values to the input gates, the circuit determines Boolean values at each node in
the obvious way.
If the value of the output node is 1 for an input assignment, we say that this assignment satisfies the circuit.
The weight of an assignment is its number of 1s.

Weighted Circuit Satisfiability (WCS)

Input: A Boolean circuit C, an integer k
Parameter: k
Question: Is there an assignment with weight k that satisfies C?

Exercise: Show that Weighted Circuit Satisfiability ∈ XP.

WCS for special circuits

Definition 4. The class of circuits Ct,d contains the circuits with weft ≤ t and depth ≤ d.

For any class of circuits C, we can define the following problem.

WCS[C]
Input: A Boolean circuit C ∈ C, an integer k
Parameter: k
Question: Is there an assignment with weight k that satisfies C?

W classes

Definition 5 (W-hierarchy). Let t ∈ {1, 2, . . . }. A parameterized problem Π is in the parameterized complexity
class W[t] if there exists a parameterized reduction from Π to WCS[Ct,d] for some constant d ≥ 1.

Independent Set and Dominating Set

Theorem 6. Independent Set ∈W[1].

Theorem 7. Dominating Set ∈W[2].

Recall: A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such that NG[S] = V .

Dominating Set
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a dominating set of size at most k?

“Proof” by picture
Parameterized reductions from Independent Set to WCS[C1,3] and from Dominating Set to WCS[C2,2].

a

b c

d e a b c d e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧
out

a b c d e

∨ ∨ ∨ ∨ ∨

∧
out

Setting an input node to 1 corresponds to adding the corresponding vertex to the independent set / dominating
set.
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W-hardness

Definition 8. Let t ∈ {1, 2, . . . }. A parameterized decision problem Π is W[t]-hard if for every parameterized
decision problem Π′ in W[t], there is a parameterized reduction from Π′ to Π. Π is W[t]-complete if Π ∈W[t] and
Π is W[t]-hard.

Theorem 9 ([DF95b]). Independent Set is W[1]-complete.

Theorem 10 ([DF95a]). Dominating Set is W[2]-complete.

Proving W-hardness
To show that a parameterized decision problem Π is W[t]-hard:

• Select a W[t]-hard problem Π′

• Show that Π′ ≤FPT Π by designing a parameterized reduction from Π′ to Π

– Design an algorithm, that, for any instance I ′ of Π′ with parameter k′, produces an equivalent instance
I of Π with parameter k

– Show that k is upper bounded by a function of k′

– Show that there exists a function f such that the running time of the algorithm is f(k′) · |I ′|O(1)

2 Case study

Clique
A clique in a graph G = (V,E) is a subset of its vertices S ⊆ V such that every two vertices from S are adjacent
in G.

Clique

Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have a clique of size k?

• We will show that Clique is W[1]-hard by a parameterized reduction from Independent Set.

Lemma 11. Independent Set ≤FPT Clique.

Proof. Given any instance (G = (V,E), k) for Independent Set, we need to describe an FPT algorithm that
constructs an equivalent instance (G′, k′) for Clique such that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent Set if and only if (G′, k′) is a
Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S, we have that uv /∈ E. Therefore,
uv ∈ E(G) for every two vertices in S. We conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent set of size k in G.
Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in polynomial time.

Corollary 12. Clique is W[1]-hard

3 Further Reading

• Chapter 13, Fixed-parameter Intractability in [Cyg+15]

• Chapter 13, Parameterized Complexity Theory in [Nie06]

• Elements of Chapters 20–23 in [DF13]
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