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What did we cover last week?
Memory

● Pointers and the idea of what computer memory is

Structs

● Custom variables made up of collections of variables

Professionalism

● Caring about yourself and others in your work



What are we covering today?
Memory

● How functions work in memory
● Direct use of memory in C

Structs and pointers

● Building data structures



Recap - Professionalism
Caring about the people around you and your work

● Communication
● Teamwork
● Resilience
● Technical Skills

● No time like the present to put this into practice!
● Please try to keep your interactions with others as respectful as you can



Recap - Pointers
Pointers

● A pointer is a variable that stores a memory address
● We can assign a memory location to a pointer from a variable
● We can access the memory the pointer is "aiming at"

    int i = 100;
    // create a pointer called ip that points at
    // the location of i
    int *ip = &i;
    printf("The value of the variable at %p is %d", ip, *ip);



Recap - Structs
Structs

● A struct is a collection of variables that can be accessed under one name
● They're used to collect custom information together

struct fighter {
    char name[20];
    int strength;
    int health;
};



Functions and Memory
What actually gets passed to a function?

● Everything gets passed "by value"
● Variables are copied by the function
● The function will then work with their own versions of the variables



What happens to variables passed to functions?
int main (void) {
    int x = 5;
    int y = doubler(x);
    printf("x is %d and y is %d.\n", x, y);
    // "x is 5 and y is 10"
    // this is because the doubler function takes the value 5 from x
    // and copies it into the variable "number" which is a new variable
    // that only lasts as long as the doubler function runs
}

int doubler(int number) {
    number = number * 2;
    return number;
}



Functions and Pointers
What happens to pointers that are 
passed to functions?

● Everything gets passed "by value"
● But the value of a pointer is a 

memory address!
● The memory address will be copied 

into the function
● This means both pointers are 

accessing the same variable!
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Functions and Pointers
int main (void) {
    int x = 5;
    int *pointerX = &x;
    doublePointer(pointerX);
    printf("x is %d.\n", x);
    // "x is 10"
    // This is because doublePointer gets given access to x via its
    // copied pointer . . . since it changes what's at the other end of
    // that pointer, it affects x
}

// Double the value of the variable the pointer is aiming at
void doublePointer(int *numPointer) {
    *numPointer = *numPointer * 2;
}



Arrays are represented as pointers
Arrays and pointers are very similar

● An array is a variable
● It's not actually a variable containing all 

the elements
● When we use the array variable (no []), 

it's actually the memory address of the 
start of the elements

● Arrays and pointers act the same! 
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Functions and Arrays
int main (void) {    
    int myNums[3] = {1,2,3};
    doubleAll(3, myNums);
    printf("Array is: ");
    int i = 0;
    while(i < 3) {
        printf("%d ", myNums[i]);
        i++;
    }
    printf("\n");
    // "Array is 2 4 6"
    // Since passing an array to a function will pass the address
    // of the array, any changes made in the function will be made
    // to the original array
}



Functions and Arrays continued

// Double all the elements of a given array
void doubleAll(int length, int numbers[]) {
    int i = 0;
    while(i < length) {
        numbers[i] = numbers[i] * 2;
        i++;
    }
}



Break Time
We hope everyone learnt something new 
while working on Coco

● Remember that competition success 
and being a good programmer are not 
necessarily correlated!

"I don't care who you are, where you're 
from, what you've done . . . as long as you 
love C." - The Backstreet Boys

C



Memory in Functions
What happens to variables we create inside functions?
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Memory in Functions
What happens to variables we create inside functions?
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Keeping memory available
What if we want to create something in a function?

● We often want to run functions that create data
● We can't always pass it back as an output

// Make a number and return a pointer to them
int *createNumber() {
    int number = 10;
    return &number;
}
// This example will return a pointer to memory that we no longer have!



Memory Allocation
C has the ability to allocate memory

● A function called malloc(bytes) returns a pointer to memory
● Allows us to take control of a block of memory

● This won't automatically be cleaned up when a function ends
● To clean up the memory, we call free(pointer)
● free() will use the pointer to find our previous memory to clean it up



What malloc() does
Using malloc, we can assign some memory that is not tied to a function
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Malloc() in code
We can assign a particular amount of memory for use

● The function sizeof() allows us to see how many bytes something needs
● We can use sizeof() to allocate the correct amount of memory

// Allocate memory for a number and return a pointer to them
int *mallocNumber() {
    int *intPointer = malloc(sizeof(int));
    *intPointer = 10;
    return intPointer;
}
// This example will return a pointer to memory we can use



Cleaning up after ourselves
Allocated memory is never cleaned up automatically

● We need to remember to use free()
● Every pointer that is aimed at allocated memory must be freed!

// Allocate memory for a number and return a pointer to them
int main(void) {
    int *iPointer = mallocNumber();
    
    *iPointer += 25;

    free(iPointer);
    return 0;
}



Freeing up memory
Calling free will clean up the allocated memory that we're finished with
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Using memory
Some things to think about with malloc() and free()

● You can use sizeof() to figure out how many bytes something needs
● We can malloc arrays and structs as well as variables
● In general, always use sizeof() with malloc()

● Anything allocated with malloc() must be free() after you've finished with it
● Otherwise we get what's known as memory leaks!



A new kind of struct
Let's make an interesting struct 

● This is a node
● It contains some information
● As well as a pointer to another node!

struct node {
    struct node *next;
    int data;
}



A Chain of Nodes - a Linked List
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Linked Lists
A chain of these nodes is called a Linked List

As opposed to Arrays . . .

● Not one continuous block of memory
● Items can be shuffled around by changing where pointers aim
● Length is not fixed when created
● You can add or remove items from inside the list



Let's make a simple Linked List
What do we need?

● A struct for a node
● A pointer to keep track of the start of the list
● A way to create a node and connect it



A function to add a node
// Create a node using the data and next pointer provided
// Return a pointer to this node
struct node *createNode(int data, struct node *next) {
    struct node *n;
    // allocate the memory for a single node
    n = malloc(sizeof (struct node));
    if (n == NULL) {
        // malloc returns NULL if there isn't enough memory
        // terminate the program
        fprintf(stderr, "out of memory\n");
        exit(1);
    }
    n->data = data;
    n->next = next;
    return n;
}



Building a list from createNode()

int main (void) {
    // head will always point to the first element of our list
    struct node *head = createNode(1, NULL);
    head = createNode(2, head);
    head = createNode(3, head);
    head = createNode(4, head);
    head = createNode(5, head);
    
    return 0;
}



How it works 1
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How it works 2
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How it works 3
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We're not finished here . . .
To be continued on Thursday!

● We haven't actually used our list yet
● We'll want to be able to traverse the list
● We also want to add and remove objects



What did we learn today?
Functions and Memory

● How functions have their own piece of memory
● How we lose access to anything in a function once it returns
● How we can specifically allocate memory

Linked Lists

● We've seen a node that can point at another node
● This forms a chain of nodes known as a Linked List


