
COMP1511 - Programming
Fundamentals

Term 1, 2019 - Lecture 15
Stream B

What did we cover last week?
Memory

● Pointers and the idea of what computer memory is

Structs

● Custom variables made up of collections of variables

Professionalism

● Caring about yourself and others in your work

What are we covering today?
Memory

● How functions work in memory
● Direct use of memory in C

Structs and pointers

● Building data structures

Recap - Professionalism
Caring about the people around you and your work

● Communication
● Teamwork
● Resilience
● Technical Skills

● No time like the present to put this into practice!
● Please try to keep your interactions with others as respectful as you can

Recap - Pointers
Pointers

● A pointer is a variable that stores a memory address
● We can assign a memory location to a pointer from a variable
● We can access the memory the pointer is "aiming at"

 int i = 100;
 // create a pointer called ip that points at
 // the location of i
 int *ip = &i;
 printf("The value of the variable at %p is %d", ip, *ip);

Recap - Structs
Structs

● A struct is a collection of variables that can be accessed under one name
● They're used to collect custom information together

struct fighter {
 char name[20];
 int strength;
 int health;
};

Functions and Memory
What actually gets passed to a function?

● Everything gets passed "by value"
● Variables are copied by the function
● The function will then work with their own versions of the variables

What happens to variables passed to functions?
int main (void) {
 int x = 5;
 int y = doubler(x);
 printf("x is %d and y is %d.\n", x, y);
 // "x is 5 and y is 10"
 // this is because the doubler function takes the value 5 from x
 // and copies it into the variable "number" which is a new variable
 // that only lasts as long as the doubler function runs
}

int doubler(int number) {
 number = number * 2;
 return number;
}

Functions and Pointers
What happens to pointers that are
passed to functions?

● Everything gets passed "by value"
● But the value of a pointer is a

memory address!
● The memory address will be copied

into the function
● This means both pointers are

accessing the same variable!

A program's memory (not to scale)

Pointer
A

Variable
A function

Copy
of

Pointer

Functions and Pointers
int main (void) {
 int x = 5;
 int *pointerX = &x;
 doublePointer(pointerX);
 printf("x is %d.\n", x);
 // "x is 10"
 // This is because doublePointer gets given access to x via its
 // copied pointer . . . since it changes what's at the other end of
 // that pointer, it affects x
}

// Double the value of the variable the pointer is aiming at
void doublePointer(int *numPointer) {
 *numPointer = *numPointer * 2;
}

Arrays are represented as pointers
Arrays and pointers are very similar

● An array is a variable
● It's not actually a variable containing all

the elements
● When we use the array variable (no []),

it's actually the memory address of the
start of the elements

● Arrays and pointers act the same!

Another program's memory (not to scale)

Array

A function

Array
passed

in

A
rray elem

ents

Functions and Arrays
int main (void) {
 int myNums[3] = {1,2,3};
 doubleAll(3, myNums);
 printf("Array is: ");
 int i = 0;
 while(i < 3) {
 printf("%d ", myNums[i]);
 i++;
 }
 printf("\n");
 // "Array is 2 4 6"
 // Since passing an array to a function will pass the address
 // of the array, any changes made in the function will be made
 // to the original array
}

Functions and Arrays continued

// Double all the elements of a given array
void doubleAll(int length, int numbers[]) {
 int i = 0;
 while(i < length) {
 numbers[i] = numbers[i] * 2;
 i++;
 }
}

Break Time
We hope everyone learnt something new
while working on Coco

● Remember that competition success
and being a good programmer are not
necessarily correlated!

"I don't care who you are, where you're
from, what you've done . . . as long as you
love C." - The Backstreet Boys

C

Memory in Functions
What happens to variables we create inside functions?

A program's memory (not to scale)

main
function

Variables
declared

inside
main

A program's memory (not to scale)

main
function

Variables
declared

inside
main

A function
called by

main

Variables
declared

inside
function

A function is
called from
main

Memory in Functions
What happens to variables we create inside functions?

A program's memory (not to scale)

main
function

Variables
declared

inside
main

A program's memory (not to scale)

main
function

Variables
declared

inside
main

The function
ends

Variables
declared

inside
function

The function
returns

This memory
disappears

Variables
are no
longer

accessible

Keeping memory available
What if we want to create something in a function?

● We often want to run functions that create data
● We can't always pass it back as an output

// Make a number and return a pointer to them
int *createNumber() {
 int number = 10;
 return &number;
}
// This example will return a pointer to memory that we no longer have!

Memory Allocation
C has the ability to allocate memory

● A function called malloc(bytes) returns a pointer to memory
● Allows us to take control of a block of memory

● This won't automatically be cleaned up when a function ends
● To clean up the memory, we call free(pointer)
● free() will use the pointer to find our previous memory to clean it up

What malloc() does
Using malloc, we can assign some memory that is not tied to a function

A program's memory (not to scale)

The
function
returns

A program's memory (not to scale)

main
function

Variables
declared

inside
main

A
function
called by

main Memory
assigned

by
malloc

main
function

Variables
declared

inside
main

Function
memory

no longer
accessible Memory

still
usablePointer

gives
access to
memory

Malloc() in code
We can assign a particular amount of memory for use

● The function sizeof() allows us to see how many bytes something needs
● We can use sizeof() to allocate the correct amount of memory

// Allocate memory for a number and return a pointer to them
int *mallocNumber() {
 int *intPointer = malloc(sizeof(int));
 *intPointer = 10;
 return intPointer;
}
// This example will return a pointer to memory we can use

Cleaning up after ourselves
Allocated memory is never cleaned up automatically

● We need to remember to use free()
● Every pointer that is aimed at allocated memory must be freed!

// Allocate memory for a number and return a pointer to them
int main(void) {
 int *iPointer = mallocNumber();

 *iPointer += 25;

 free(iPointer);
 return 0;
}

Freeing up memory
Calling free will clean up the allocated memory that we're finished with

A program's memory (not to scale)

main
function

Variables
declared

inside
main

Memory
still

usable

A program's memory (not to scale)

main
function

Variables
declared

inside
main

Memory
no

longer
needed

free()
this
pointer

free() is
called

Using memory
Some things to think about with malloc() and free()

● You can use sizeof() to figure out how many bytes something needs
● We can malloc arrays and structs as well as variables
● In general, always use sizeof() with malloc()

● Anything allocated with malloc() must be free() after you've finished with it
● Otherwise we get what's known as memory leaks!

A new kind of struct
Let's make an interesting struct

● This is a node
● It contains some information
● As well as a pointer to another node!

struct node {
 struct node *next;
 int data;
}

A Chain of Nodes - a Linked List

A program's memory (not to scale)

Node

Next

Data

Node

Next

Data

Node

Next

Data

Node

Next

Data
A
pointer
to the
first
node

NULL

Linked Lists
A chain of these nodes is called a Linked List

As opposed to Arrays . . .

● Not one continuous block of memory
● Items can be shuffled around by changing where pointers aim
● Length is not fixed when created
● You can add or remove items from inside the list

Let's make a simple Linked List
What do we need?

● A struct for a node
● A pointer to keep track of the start of the list
● A way to create a node and connect it

A function to add a node
// Create a node using the data and next pointer provided
// Return a pointer to this node
struct node *createNode(int data, struct node *next) {
 struct node *n;
 // allocate the memory for a single node
 n = malloc(sizeof (struct node));
 if (n == NULL) {
 // malloc returns NULL if there isn't enough memory
 // terminate the program
 fprintf(stderr, "out of memory\n");
 exit(1);
 }
 n->data = data;
 n->next = next;
 return n;
}

Building a list from createNode()

int main (void) {
 // head will always point to the first element of our list
 struct node *head = createNode(1, NULL);
 head = createNode(2, head);
 head = createNode(3, head);
 head = createNode(4, head);
 head = createNode(5, head);

 return 0;
}

How it works 1

A program's memory (not to scale)

Node

Next

1
HEAD NULL

CreateNode makes a node with a NULL next and we point head at it

How it works 2

A program's memory (not to scale)

Node

Next

2
HEAD

Node

Next

1
NULL

The 2nd node points its "next" at the old head, then it replaces head with its
own address

How it works 3

A program's memory (not to scale)

Node

Next

3
HEAD

Node

Next

2

Node

Next

1
NULL

The process continues . . .

We're not finished here . . .
To be continued on Thursday!

● We haven't actually used our list yet
● We'll want to be able to traverse the list
● We also want to add and remove objects

What did we learn today?
Functions and Memory

● How functions have their own piece of memory
● How we lose access to anything in a function once it returns
● How we can specifically allocate memory

Linked Lists

● We've seen a node that can point at another node
● This forms a chain of nodes known as a Linked List

