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Tool Use Learning

Learning to Use Tools

•Learn to use an object as a tool by: 

•observing another agent use the tool to 
achieve a goal 

•Trial-and-error to refine a theory about 
how to use the tool
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Tool Use Learning

Simulated Robot World

6 Introduction

of our approach to solving tool-use learning problems, using the same example as

illustration.

1.4.1 The tube problem

In the tube problem the robot is set the goal of obtaining an object (in this case

a small box) which is placed in a horizontal tube lying on the ground. The tube

is open at one end and closed at the other, as shown in Figure 1.1. The agent is

unable to reach directly into the tube directly to pick up the box because the tube

is too narrow. In order to obtain the desired box it must use a hooked stick tool

to first pull the box out of the tube before it can be picked up.

Figure 1.1: Using a pull-tool to reach an object placed in a closed “tube”. This
task is used in the experimental evaluation in Chapter 5.

The tube problem is interesting because it involves the use of a common type

of tool used by humans and animals alike: a “reaching” tool, used to bring an out-

of-reach object closer to the agent so it can be more easily accessed. In the animal

kingdom, New Caledonian crows use hook tools to extract grubs from holes in

logs, whilst chimpanzees extract termites by inserting thin sticks into passageways

leading into termite mounds.

Variations on this task are also common in studies of animal tool use and

cognition. Some of the earliest experiments with animals and tool use, performed
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Tool Use Learning

Trainer’s Demonstration
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Tool Use Learning

Learning Agent Architecture
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Tool Use Learning

Assumptions

•All objects are graspable 

•i.e. no control problems 

•The robot has background knowledge of some 
actions 

•Unknown action sequence consists of 

•tool positioning actions 

•application of tool resulting in goal state
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Tool Use Learning

Action Models

ACTION  put_under(Cup, Tap) 

PRE   in_gripper(Cup), 

   gripping(Cup), 

   clear_underneath(Tap), 

   orientation(Cup, vertical-up) 

ADD   below(Cup, Tap), 

   near(Cup, Tap), 

   aligned_vertically(Cup, Tap) 

DEL   clear_underneath(Tap) 

MOVING  robot-arm, Cup    // manipulated objects 

PRIMITIVES fwd, back, left, right, up, down, rotatecw, rotateccw
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Tool Use Learning

Background Knowledge

8

grip(Obj)
PRE ¬gripping,

in_gripper(Obj)
ADD gripping
DEL -
PRIMTV closeGrip
MOVING -

ungrip(Obj)
PRE gripping,

in_gripper(Obj)
ADD -
DEL gripping
PRIMTV openGrip
MOVING -

remove_from_gripper(Obj)
PRE in_gripper(Obj), 

¬gripping
ADD empty gripper
DEL in_gripper(Obj)
PRIMTV back
MOVING robot

recognise_goto
PRE empty_gripper
MOVING robot

put_in_gripper(Obj)
PRE forall(Tube:tube, ¬in(Obj,Tube)), 

empty_gripper,
¬gripping,
forall(Obstacle:obj, ¬obstructing(Obstacle,Obj))

ADD in_gripper(Obj)
DEL empty_gripper
PRIMTV fwd, back, rotleft, rotright
MOVING robot

move_obstacle(ObjA,ObjB)
PRE moveable obj(ObjA), 

obstructing(ObjA,ObjB),
in_gripper(ObjA),
gripping

ADD -
DEL obstructing(ObjA,ObjB)
PRIMTV fwd, back, rotleft, rotright
MOVING robot, ObjA

recognise_carry_obj(Obj)
PRE in_gripper(Obj), 

gripping
MOVING robot, Obj



Tool Use Learning

State Predicates
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Dynamic predicates:
in_gripper(+obj,+state)
touching(+obj,-obj,-side,+state)
at_right_angles(+obj,+obj,+state)
at_oblique_angle(+obj,+obj,+state)
parallel(+obj,+obj,+state)
on_axis(+obj,+obj,+state)
on_perp_axis(+obj,+obj,+state)
in_tube(+obj,-tube,+state)
in_tube_end(+obj,-tube,-end,+state)
in_tube_side(+obj,-tube,-side,+state)
obstructing(+obj,+obj,+state)

Static predicates:
attached_side(+obj,-obj,-side)
attached_end(+obj,-obj,-disttype)
attached_angle(+obj,-obj,-angletype)
num_attachments(+obj,-number)
longest_component(+obj)
attached_type(+obj,-obj,-attachtype)
narrower(+obj,+obj)
shorter(+obj,+obj)
shape(+obj,-shape)
closed_tube(-tube, -obj, -obj, -obj)



Tool Use Learning

The world is continuous
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• First step is to discretise time-series 
observations of trainer 

• Convert to action sequence



Tool Use Learning

Segmentation Heuristics

•Object Motion 

•A distinct action begins or ends each time 
an object or agent starts or stops moving 

•Object Contact 

•An action starts or stops when two 
objects come into contact or break 
contact
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Tool Use Learning

Segmenting Observations
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Segment on changes

Identify known action

Extract novel actions



Tool Use Learning

Matching Actions

•A segment is matched with an abstract action if: 

•Objects manipulated in the segment can be 
matched to MOVING list in action model 

•Preconditions are true at beginning of segment 

•Effects are true at end of segment 

•If more than one action matches: 

•choose action with most specific preconditions
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Tool Use Learning

Segmentation
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Segment Moving objects Teacher’s action (unknown)

1 robot Put tool in gripper

2 gripper Close gripper

3 robot, tool Put tool in pulling pose

4 robot, tool, box Pull box with tool

5 robot, tool Put tool aside

6 gripper Open gripper

7 robot Put box in gripper

8 gripper Close gripper

9 robot, box Carry away box



Tool Use LearningActive Robot Learning

Explanation of Observed Actions
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Segment Moving objects Explanation Match Type

1 robot put in gripper(hookstick) exact
2 gripper grip(hookstick) exact
3 robot, tool recognise_carry_obj(hookstick) partial
4 robot, tool, box ?? none
5 robot, tool move obstacle(hookstick,box) exact
6 gripper ungrip(hookstick) exact
7 robot remove_from_gripper(hookstick),

put in gripper(box)
exact

8 gripper grip(box) exact
9 robot, box recognise_carry_obj(box) partial



Tool Use Learning

Invented Actions
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position_tool(Tool, Box) 

PRE: 

in_gripper(Tool),  

gripping 

ADD: 
tool_pose(Tool, Box), 

obstructing(Tool, Box) 

DEL: -

pull_from_tube(Tool, Box, Tube) 

PRE: 
tool_pose(Tool, Box), 

in_gripper(Tool), 

gripping, 
in_tube(Box, Tube) 

ADD: - 

DEL: in_tube(Box, Tube)



Tool Use Learning

Inductive Logic Programming

•Initial version space boundaries: 

tool_poseG(Tool, Box, State) :- true.

tool_poseS(Tool, Box, State) :- saturation(s1).

•Most specific hypothesis is constructed by 
saturating trainer’s example
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Tool Use Learning

Bottom Clause
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tool poseS(Tool, Box, State):-
% static properties
attached(Tool, Hook), 
num attachments(Tool, 1), 
num attachments(Box, 0), 
longest component(Tool), 
narrower(Tool, Box), 
shorter(Box, Tool), 
shape(Tool, sticklike), 
shape(Box, boxlike), 
closed tube(Tube, TubeLeft, TubeRight, TubeBack), 
attached side(Tool, Hook, right), 
attached side(TubeLeft, TubeBack, right), 
attached side(TubeRight, TubeBack, left), 
attached end(Tool, Hook, front), 
attached end(TubeLeft, TubeBack, front), 
attached end(TubeRight, TubeBack, front), 
attached angle(Tool, Hook, right angle), 
attached angle(TubeLeft, TubeBack, right angle), 
attached angle(TubeRight, TubeBack, right angle), 
attached type(Tool, Hook, end to end), 
attached type(TubeLeft, TubeBack, end to end), 
attached type(TubeRight, TubeBack, end to end), 
num attachments(Hook, 0), 
num attachments(TubeLeft, 1), 
num attachments(TubeRight, 1), 
num attachments(TubeBack, 0), 
narrower(Hook, Tool), 
narrower(Hook, Box),
% fluents
in gripper(Tool, State), 
touching(Tool, Box, right, State), 
at oblique angle(Tool, Box, State), 
in tube(Box, Tube, State), 
in tube end(Box, Tube, front, State), 
in tube side(Box, Tube, right, State), 
touching(Hook, Box, back, State), 
at right angles(Hook, TubeLeft, State), 
at right angles(Hook, TubeRight, State), 
at right angles(Tool, TubeBack, State), 

narrower(Tool, TubeLeft), 
narrower(TubeLeft, Box), 
narrower(Hook, TubeLeft), 
narrower(Tool, TubeRight), 
narrower(TubeRight, Box), 
narrower(Hook, TubeRight), 
narrower(Tool, TubeBack), 
narrower(TubeBack, Box), 
narrower(Hook, TubeBack), 
narrower(TubeBack, TubeLeft), 
narrower(TubeBack, TubeRight), 
shorter(Hook, Tool),
shorter(Tool, TubeLeft), 
shorter(Tool, TubeRight), 
shorter(TubeBack, Tool), 
shorter(Box, Hook), 
shorter(Box, TubeLeft), 
shorter(Hook, TubeLeft), 
shorter(TubeBack, TubeLeft), 
shorter(Box, TubeRight), 
shorter(Hook, TubeRight), 
shorter(TubeBack, TubeRight), 
shorter(TubeBack, TubeLeft), 
shorter(Box, TubeBack), 
shorter(Hook, TubeBack), 
shape(TubeLeft, sticklike), 
shape(TubeRight, sticklike), 
shape(TubeBack, sticklike),

at oblique angle(Box, Hook, State), 
at oblique angle(Box, TubeLeft, State), 
at oblique angle(Box, TubeRight, State), 
at oblique angle(Box, TubeBack, State), 
parallel(Tool, TubeLeft, State), 
parallel(Tool, TubeRight, State), 
parallel(Hook, TubeBack, State), 
in tube(Hook, Tube, State), 
in tube end(Hook, Tube, front, State), 
in tube side(Hook, Tube, right, State).



Tool Use Learning

Generating an Experiment
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• Start with HG and add literals 
from HS but ... 

• select tool that satisfies the most 
structural constraints in HS 

• select pose to maximise the 
spatial literals satisfied in HS 

• Bias specific-to-general search 
results by trying to generate 
experiments near most 
specific boundary



Tool Use Learning

Tools Available for Experimentation
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1.6 Action representation 19

definition of correct tool pose state.

4. Generate a new learning task, or reset the current one: If the

current task was successfully solved, a new learning task is generated and

presented to the agent. If the agent failed then the current task is reset.

5. Repeat: The agent continues its experimentation on a sequence of learning

tasks, refining its hypothesis. The experiment is terminated when the agent

is able to solve a pre-defined number of consecutive tasks without failure.

For each learning task presented to the agent, a selection of tool objects are

available for solving the problem. The dimensions of the tools are constructed

randomly according to a type definition specified by the user. Figure 1.8 shows

the type of tools which are available for the tube task. Only the two hook tools

(on the left of the figure), with right-angled hooks at the end of the handle are

suitable for solving the task. Exactly which should be chosen in any particular

case (a right-sided hook or a left-sided hook) depends on which side of the tube the

box is located (right or left). Our relational learner is able to learn this important

distinction, which would defeat a propositional learner.

Figure 1.8: Examples of tools available for the pull-from-tube task. Only the two
hook sticks on the left of the figure are suitable tools, and the exact one which
should be chosen depends on the location of the box in the tube. A box on the
left side of the tube requires a left-sided hook and vice-versa.

The application of relational concept-learning to learn a novel action is not new

(see Chapter 2 for a discussion of previous work). However, the learning algorithm

used in our agent is a novel one, based on previous work in the Inductive Logic

Programming system GOLEM (Muggleton and Feng, 1992). We generalise over



Tool Use Learning

Positive and Negative Examples 
of Tool Use
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18 Introduction

the action sub-goal, which may occur due to the wrong tool being selected or the

tool being placed in the wrong pose. Figure 1.7 shows three examples generated in

the tube problem. It is important to note that the agent labels its own examples,

rather than having them labelled by the user. The labelling is done by simply

observing whether the tool action subgoal (identified in the learning by explanation

step) was achieved.

Figure 1.7: Positive and negative examples of correct tool use with a pull-tool.
The leftmost example shows a positive example, whilst the other two are negative.
Note that a correct example requires satisfying both structural constraints (which
describe how the tool is constructed) and spatial constraints (which describe how
the tool should be placed). If either is incorrect then the tool sub-goal will not be
achieved.

The process for learning the concept describing the tool pose state is as follows:

1. Test the current hypothesis: Select a tool which satisfies the hypothesis

and place it in a pose defined by the spatial constraints in hypothesis.

Generate a motion plan which solves the task from this state and execute

it, observing whether the action sub-goal is achieved.

2. Add a new positive or negative example: If the action achieved the

desired sub-goal, label the initial state as a positive example. If the action

failed to achieve the desired sub-goal, label it as a negative example.

3. Update the hypothesis: Run a relational concept learner to update the

pos neg neg



Tool Use Learning

Updating the Version Space

•An uncovered positive example generalises HS 

•Like GOLEM, find RLGG of old hypothesis and 
new example 

•A covered negative example specialises HG 

•Use negative-based reduction to recreate HG 

•Find most general HG  by removing literals from 
HS as long as negative examples are not covered 
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Tool Use Learning

Experiments
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Evolution of most general hypothesis: 

tool_poseG(Tool, Box, State) :- 
 attached side(Tool, Hook, right). 

. . .  

tool_poseG(Tool, Box, State) :- 
 attached side(Tool, Hook, right), 
 touching(Hook, Box, back, State). 

. . .  

tool_poseG(Tool, Box, State) :- 
 attached(Tool, Hook), 
 narrower(Hook, Box), 
 touching(Hook, Box, back, State). 

. . .  

tool_poseG(Tool, Box, State) :- 
 in_tube_side(Box, Tube, Side, State), 
 attached_side(Tool, Hook, Side), 
 touching(Hook, Box, back, State), 
 attached_angle(Tool, Hook, rightangle), 
 attached_end(Tool, Hook, back).



Tool Use Learning

Making a plan operational

•To run experiment: 

•learned actions must be incorporated 
into a plan 

•sequence of abstract actions generated 
by planer must be turned into action 
primitives 

•i.e. real numbers needed!
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Tool Use Learning

Behaviour Generation
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Fast Forward 
(Hoffman & Nebel)

Abstract Action:
• moving objects
• primitives
• preconditions
• effects

Constraint Solver

Path Planner

Controller

}

Abstract goal

Primitive goal state

Object paths

Primitive actions

Composite motion 
primitives

Primitive state

ECLiPSe 

(Apt & Wallace)

Rapid Random Trees 
(Kuffer & LaValle)



Tool Use Learning

•Extract the spatial sub-goals from action model 

•Constraint solver finds a primitive world state satisfying 
spatial subgoals 

•Moveable objects in MOVING list are treated as a single 
geometric object to be manipulated by the motion planner. 
Allowed movement primitives are given by PRIMITIVES list. 

•Motion planner uses composite object motion primitives to 
generate a path from current world state to ground goal state 
generated in step 2 

•Track path using a generic controller 

•Follow until the primitive goal state is reached 

•Failures detected by timeout cause re-planning

26

Generating Behaviour from 
Abstract Action


