A Relational Approach
to Tool Use Learning in
Robots

Solly Brown
Claude Sammut

School of Computer Science and Engineering
The University of New South Wales

'0)

Autonomous
Systems

Learn to use an object as a tool by:

observing another agent use the tool to
achieve a goal

Trial-and-error to refine a theory about
how to use the tool

O

Autonomous
Systems

O

Autonomous
Systems

guocatn pusercarmi

Controls

time 2278700 0.000

'0)

Autonomous
Systems

WORLD
Sensors actuators
world state motion

planner

/

Demonstration from
teacher agent

Learning by
explanation

New abstract tool action

Learning by trial
and error

high-level <
planner

5

Refined tool action model

'0)

Autonomous
Systems

All objects are graspable
i.e. no control problems

The robot has background knowledge of some
actions

Unknown action sequence consists of
tool positioning actions

application of tool resulting in goal state

'0)

Autonomous
Systems

ACTION put_under(Cup, Tap) s 5 s3 s
tap -—»
PRE in_gripper(Cup), T T T T
- 4 | [B L
gripping(Cup), A
cup
clear_underneath(Tap),
poOS neg pos neg
orientation(Cup, vertical-up)
ADD below(Cup, Tap),
near(Cup, Tap),
aligned_vertically(Cup, Tap)
DEL clear_underneath(Tap)
MOVING robot-arm, Cup // manipulated objects

PRIMITIVESfwd, back, left, right, up, down, rotatecw, rotateccw

7

'0)

Autonomous
Systems

grip(Obj)

PRE —gripping,
in_gripper(Obj)

ADD gripping

DEL -

PRIMTV closeGrip
MOVING -

ungrip(Obj)

PRE gripping,
in_gripper(Obj)

ADD -

DEL gripping

PRIMTV openGrip
MOVING -

remove_from_gripper(Obj)

PRE in_gripper(Obj),
—gripping

ADD empty gripper

DEL in_gripper(Obj)

PRIMTV back
MOVING robot

recognise_goto

PRE empty_gripper
MOVING robot

put_in_gripper(Obj)

PRE forall(Tube:tube, =in(Obj, Tube)),
empty_gripper,
—gripping,
forall(Obstacle:obj, -obstructing(Obstacle,Obj))
ADD in_gripper(Obj)
DEL empty_gripper

PRIMTV fwd, back, rotleft, rotright
MOVING robot

move_obstacle(ObjA,ObjB)

PRE moveable obj(ObjA),
obstructing(ObjA,ObjB),
in_gripper(ObjA),
gripping

ADD -

DEL obstructing(ObjA,ObjB)

PRIMTV fwd, back, rotleft, rotright
MOVING robot, ObjA

recognise_carry_obj(Obj)
PRE in_gripper(Obj),

gripping
MOVING robot, Obj

O

Autonomous
Systems

Dynamic predicates: Static predicates:
in_gripper(+obj,+state) attached_side(+obj,-obj,-side)
touching(+obj,-obj,-side,+state) attached_end(+obj,-obj,-disttype)
at_right_angles(+obj,+obj,+state) attached_angle(+obj,-obj,-angletype)
at_oblique_angle(+obj,+obj,+state) num_attachments(+obj,-number)
parallel(+obj,+obj,+state) longest_component(+obj)
on_axis(+obj,+obj,+state) attached_type(+obj,-obj,-attachtype)
on_perp_axis(+obj,+obj,+state) narrower(+obj,+obj)
in_tube(+obj,-tube,+state) shorter(+obj,+obj)
in_tube_end(+obj,-tube,-end,+state) shape(+obj,-shape)
in_tube_side(+o0bj,-tube,-side,+state) closed_tube(-tube, -obj, -obj, -obj)

obstructing(+obj,+obj,+state)

'0)

Autonomous
Systems

First step is to discretise time-series
observations of trainer

Convert to action sequence

Initial state Unknown action sequence Goal state

N
4 h

time

10

'0)

Autonomous
Systems

Object Motion

A distinct action begins or ends each time
an object or agent starts or stops moving

Object Contact

An action starts or stops when two
objects come into contact or break
contact

11

O

Autonomous
Systems
Start state Goal state
1.
>
1 time
2@
> Segment on changes
time
2?2
A A A A . .
2.(b) oA |dentify known action
l time
Novel action Ag
3. A AL E | A A A Extract novel actions
l l/ time
4. New abstract action
STRIPS model:
Preconditions
Effects

12

'0)

Autonomous
Systems

A segment is matched with an abstract action if:

Objects manipulated in the segment can be
matched to MOVING list in action model

Preconditions are true at beginning of segment
Effects are true at end of segment
If more than one action matches:

choose action with most specific preconditions

13

'0)

Autonomous
Systems

Segment Moving objects Teacher’s action (unknown)
1 robot Put tool in gripper
2 gripper Close gripper
3 robot, tool Put tool in pulling pose
4 robot, tool, box Pull box with tool
5 robot, tool Put tool aside
6 gripper Open gripper
7 robot Put box in gripper
8 gripper Close gripper

9 robot, box Carry away box

14

'0)

Autonomous
Systems

Segment Moving objects Explanation Match Type
1 robot put in gripper(hookstick) exact
2 gripper grip(hookstick) exact
3 robot, tool recognise_carry_obj(hookstick) partial
4 robot, tool, box ?7? none
5 robot, tool move obstacle(hookstick,box) exact
6 gripper ungrip(hookstick) exact
7 robot remove_from_gripper(hookstick), exact

put in gripper(box)
8 gripper grip(box) exact
9 robot, box recognise_carry_obj(box) partial

15

'0)

Autonomous
Systems

position_tool(Tool, Box) pull_from_tube(Tool, Box, Tube)
PRE: PRE:

in_gripper(Tool), tool_pose(Tool, Box),

gripping in_gripper(Tool), B

gripping, ;

ADD: in_tube(Box, Tube)

tool_pose(Tool, Box),

obstructing(Tool, Box) ADD: - -]

DEL: - DEL: in_tube(Box, Tube)

16

'0)

Autonomous
Systems

Initial version space boundaries:

tool poseG(Tool, Box, State) :- true.

tool poseS(Tool, Box, State) :- saturation(sl).

Most specific hypothesis is constructed by
saturating trainer’s example

17

Autonomous
Systems

tool poseS(Tool, Box, State):-

% static properties

attached(Tool, Hook),

num attachments(Tool, 1),

num attachments(Box, 0),

longest component(Tool),

narrower(Tool, Box),

shorter(Box, Tool),

shape(Tool, sticklike),

shape(Box, boxlike),

closed tube(Tube, TubeLeft, TubeRight, TubeBack),
attached side(Tool, Hook, right),

attached side(TubeLeft, TubeBack, right),
attached side(TubeRight, TubeBack, left),
attached end(Tool, Hook, front),

attached end(Tubeleft, TubeBack, front),
attached end(TubeRight, TubeBack, front),
attached angle(Tool, Hook, right angle),

attached angle(TubeLeft, TubeBack, right angle),
attached angle(TubeRight, TubeBack, right angle),
attached type(Tool, Hook, end to end),

attached type(TubeLeft, TubeBack, end to end),
attached type(TubeRight, TubeBack, end to end),
num attachments(Hook, 0),

num attachments(TubeLeft, 1),

num attachments(TubeRight, 1),

num attachments(TubeBack, 0),

narrower(Hook, Tool),

narrower(Hook, Box),

% fluents

narrower(Tool, TubeLeft),
narrower(Tubeleft, Box),
narrower(Hook, Tubeleft),
narrower(Tool, TubeRight),
narrower(TubeRight, Box),
narrower(Hook, TubeRight),
narrower(Tool, TubeBack),
narrower(TubeBack, Box),
narrower(Hook, TubeBack),
narrower(TubeBack, Tubeleft),
narrower(TubeBack, TubeRight),
shorter(Hook, Tool),
shorter(Tool, TubeLeft),
shorter(Tool, TubeRight),
shorter(TubeBack, Tool),
shorter(Box, Hook),
shorter(Box, TubeLeft),
shorter(Hook, TubeLeft),
shorter(TubeBack, Tubeleft),
shorter(Box, TubeRight),
shorter(Hook, TubeRight),
shorter(TubeBack, TubeRight),
shorter(TubeBack, Tubeleft),
shorter(Box, TubeBack),
shorter(Hook, TubeBack),
shape(Tubeleft, sticklike),
shape(TubeRight, sticklike),
shape(TubeBack, sticklike),

e

in gripper(Tool, State),
touching(Tool, Box, right, State),
at oblique angle(Tool, Box, State),
in tube(Box, Tube, State),

at oblique angle(Box, Hook, State),

at oblique angle(Box, Tubeleft, State),
at oblique angle(Box, TubeRight, State),
at oblique angle(Box, TubeBack, State),

in tube end(Box, Tube, front, State),
in tube side(Box, Tube, right, State),
touching(Hook, Box, back, State),

parallel(Tool, TubelLeft, State),
parallel(Tool, TubeRight, State),
parallel(Hook, TubeBack, State),

at right angles(Hook, TubeLeft, State),
at right angles(Hook, TubeRight, State),
at right angles(Tool, TubeBack, State),

in tube(Hook, Tube, State),
in tube end(Hook, Tube, front, State),
in tube side(Hook, Tube, right, State).

18

'0)

Autonomous
Systems

Start with H; and add literals
from Hs but ...

select tool that satisfies the most
structural constraints in Hs

select pose to maximise the
spatial literals satisfied in Hs

Bias specific-to-general search
results by trying to generate
experiments near most
specific boundary

19

'0)

Autonomous
Systems

20

'0)

Autonomous
Systems

”

poS neg neg

21

G

Autonomous
Systems

An uncovered positive example generalises Hg

Like GOLEM, find RLGG of old hypothesis and
new example

A covered negative example specialises Hg
Use negative-based reduction to recreate Hg

Find most general H; by removing literals from
Hs as long as negative examples are not covered

22

'0)

Autonomous
Systems

pos: s neg: s2 neg: s3
neg: s5 neg:s6 pos:s7

pos: s9

23

l

i

neg: s10 pos: sii

i

pos: s12

Evolution of most general hypothesis:

tool_poseG(Tool, Box, State) :-
attached side(Tool, Hook, right).

tool_poseG(Tool, Box, State) :-
attached side(Tool, Hook, right),
touching(Hook, Box, back, State).

tool_poseG(Tool, Box, State) :-
attached(Tool, Hook),
narrower(Hook, Box),
touching(Hook, Box, back, State).

tool_poseG(Tool, Box, State) :-
in_tube_side(Box, Tube, Side, State),
attached_side(Tool, Hook, Side),
touching(Hook, Box, back, State),
attached_angle(Tool, Hook, rightangle),
attached_end(Tool, Hook, back).

'0)

Autonomous
Systems

To run experiment:

learned actions must be incorporated
into a plan

sequence of abstract actions generated
by planer must be turned into action
primitives

i.e. real numbers needed!

24

'0)

Autonomous
Systems

4)
Abstract Action:
moving objects
primitives
preconditions
effects

Fast Forward
(Hoffman & Nebel)

Constraint Solver

ECLiPSe
(Apt & Wallace)

Path Planner

Rapid Random Trees
(Kuffer & LaValle)

Controller

GylplaE

25

G

Autonomous
Systems

Extract the spatial sub-goals from action model

Constraint solver finds a primitive world state satisfying
spatial subgoals

Moveable objects in MOVING list are treated as a single
geometric object to be manipulated by the motion planner.
Allowed movement primitives are given by PRIMITIVES list.

Motion planner uses composite object motion primitives to
generate a path from current world state to ground goal state
generated in step 2

Track path using a generic controller
Follow until the primitive goal state is reached

Failures detected by timeout cause re-planning

26

