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Last week

Linear programming (LP)

Real values for decision variables, linear in objective function,
linear in constraints
Large LP problems can be solved routinely

Integer programming (IP)

Some decision variables can only take integer values
Some decision variables can only take binary values, e.g. for
making yes-or-no decisions
IP problems can be solved using branch and bound in principle
Computation complexity is generally exponential except for
unimodular problems
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This week

Applications of integer programming for network flow problems

Traffic Engineering
Dimensioning problem
Topology design

Power of binary variables

We have seen using binary variables (either 0 or 1) to capture
yes-or-no type of logical decisions
Binary variables can be used to capture many other requirements
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Traffic Engineering Example (1)

A

E C

B

An ISP owns the following network which connects 
5 cities A, B, C, D and E. 
Capacity of each link is 1000 Mbps

The traffic demands 
between cities are:
A to B: 600 Mbps
A to E: 400 Mbps
A to C: 500 Mbps

D

Question: How should we
route the traffic so that the
links are at most 80% 
utilised and we use the
minimum amount of 
resources?
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Traffic Engineering Example (2)

A

E C

B

Capacity of each link is 1000 Mbps The traffic demands
between cities are:
A to B: 600 Mbps
A to E: 400 Mbps
A to C: 500 Mbps

D

But 1100 Mbps in 
link A-B! The link is 
over-utilised!

Let us assume that 
the traffic demand 
will take the shortest 
path between its end
points

500 Mbps

600 Mbps

400 
Mbps

How should you route the traffic?
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Traffic Engineering Example (3)

A

E C

B

Capacity of each link is 1000 Mbps • The traffic demands
between cities are:
A to B: 600 Mbps
A to E: 400 Mbps
A to C: 500 Mbps

D

100 Mbps

600 Mbps

400 
Mbps

400 Mbps

• Traffic in links
A-B = 700 Mbps
B-C = 100 Mbps
A-E = 800 Mbps
E-D = 400 Mbps
D-C = 400 Mbps

• Link A-E is 80% 
utilised. Others are
less utilised.

Resources used = 2400Mbps 

}+
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Traffic Engineering Example (4)

A

E C

B

Capacity of each link is 1000 Mbps • The traffic demands
between cities are:
A to B: 600 Mbps
A to E: 400 Mbps
A to C: 500 Mbps

D

200 Mbps

600 Mbps

400 
Mbps

300 Mbps

• Traffic in links
A-B = 800 Mbps
B-C = 200 Mbps
A-E = 700 Mbps
E-D = 300 Mbps
D-C = 300 Mbps

• Link A-B is 80% 
utilised. Others are
less utilised.

Resources used = 2300Mbps 

}+
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Traffic Engineering
General traffic engineering problem:

Given:
A network (i.e. nodes, links and their capacites)
The traffic demand between each pair of nodes.

Find: how to route the traffic to best utilise the resource

The traffic engineering example earlier was simple, but for a
commercial carrier (Next slide shows the network map of a
commercial carrier.), it’s no longer so.

Traffic engineering problems can be solved systematically using
integer programming
These problems are generally known as network flow problems.
Note: flow is synonymous with traffic demand between a pair of
nodes.
We will start with the simplest network flow problem, finding the
shortest path for one flow.
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Network flow problems

Network flow problems are important applications of integer
programming

Move some entity from one point to another in the network
Given alternative ways, find the most efficient one, e.g. minimum
cost, maximum profit, etc.

Network is represented as a directed graph G = (N,E)

N = the set of nodes, e.g. N = {1, 2, 3, 4, 5, 6}
E = the set of directed edges, e.g. E = {〈1, 2〉, 〈1, 3〉, 〈2, 1〉, . . .}
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Finding the shortest path

Aim: Find the shortest path from the source node to the destination
node of a flow

Cost is generally assumed to be additive, i.e. cost of a path = sum
of the cost of using each edge in the path

E.g. cost of using edges 〈1, 2〉, 〈2, 4〉 and 〈4, 6〉
= cost of edge 〈1, 2〉 + cost of edge 〈2, 4〉 + cost of edge 〈4, 6〉
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Shortest path problem (SPP)

Given

A directed graph G = (N,E)

A flow of size 1 enters at node s (source) and leaves at node d

(destination)
It costs ci,j for using directed edge 〈i, j〉

Find which directed edges the flow should use in order that

The total cost is minimized
The entire flow must use only one path

Logical decision: Should I use a directed edge or not?
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Formulating SPP

Decision variables

xi,j =

{
1 if directed edge 〈i, j〉 in E is used
0 otherwise

We assume 1 unit of flow from the source to the destination

An important part of the formulation is to make sure the directed
edges selected actually form a connected path from the source to
the destination

This is by adding the conservation of flow constraints
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Conservation of flow: Source node

What goes in = What goes out

Flow going into node 1 from external = 1
Flow going into node 1 from neighboring nodes = x2,1

Second index is “1”
Flow going from node 1 to neighboring nodes = x1,2 + x1,3

First index is “1”
Therefore, we have

1 + x2,1 = x1,2 + x1,3
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Conservation of flow: Destination node

What goes in = What goes out

Flow going into node 6 from neighboring nodes = x4,6 + x5,6

Second index is “6”
Flow going from node 6 to neighboring nodes = x6,5

First index is “6”
Flow going from node 6 to external = 1
Therefore, we have

x4,6 + x5,6 = x6,5 + 1
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Conservation of flow: Other nodes

Exercise: Work out the conservation of flow for Node 2
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Conservation of flow: Other nodes

E.g. flow conservation at node 2: What goes in = What goes out

Flow going into node 2 from neighboring nodes = x1,2 + x4,2

Second index is “2”
Flow going from node 2 to neighboring nodes = x2,1 + x2,4 + x2,5

First index is “2”
Therefore, we have

x1,2 + x4,2 = x2,1 + x2,4 + x2,5
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Conservation of flow constraints

In our example network, the source is node 1, so the constraint is

1 + x2,1 = x1,2 + x1,3

This can be rewritten as∑
j:〈1,j〉∈E

x1,j −
∑

j:〈j,1〉∈E

xj,1 = 1

The destination is node 6, so the constraint is

x4,6 + x5,6 = x6,5 + 1

This can be rewritten as∑
j:〈6,j〉∈E

x6,j −
∑

j:〈j,6〉∈E

xj,6 = −1
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Conservation of flow constraints (cont.)

For all other nodes (neither a source or a destination), e.g. node 2,
the constraint is

x1,2 + x4,2 = x2,1 + x2,4 + x2,5

This can be rewritten as∑
j:〈2,j〉∈E

x2,j −
∑

j:〈j,2〉∈E

xj,2 = 0

The flow conservation constraints can be written in a compact form∑
j:〈i,j〉∈E

xi,j −
∑

j:〈j,i〉∈E

xj,i = 0, i ∈ N − {s, d}
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IP formulation for SPP

SPP can be formulated as

min
∑

〈i,j〉∈E

ci,jxi,j

subject to

∑
j:〈i,j〉∈E

xi,j −
∑

j:〈j,i〉∈E

xj,i =


1 if i = s

0 if i ∈ N − {s, d}
−1 if i = d

xi,j ∈ {0, 1} for all 〈i, j〉 ∈ E
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SPP example

We will use AMPL/CPLEX for solving SPP in this example network

Note:

It is far more efficient to use Dijkstra’s algorithm for solving SPP
The reason of using integer programming here is for illustration
only

The files are shortest.dat, shortest.mod and shortest_batch
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Introducing non-unit flow and link capacity (1)

(Note: A dot point preceded by F indicates that it is different from
the setting of the shortest path problem.)

Given

A directed graph (N,E)

F A flow of size f with source node s and destination node d

It costs cij (per unit flow) for the flow to use directed edge (i, j)

F The capacity of the directed edge (i, j) is bij

Find which directed edges the flow should use in order that

The total cost is minimised
The entire flow must use only one path

F The flow on any directed edge does not exceed its capacity
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Introducing non-unit flow and link capacity (2)

Decision variables are the same as before

xij =

{
1 if directed edge (i, j) is used
0 otherwise

The amount of flow on directed edge (i, j) will be fxij
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Introducing non-unit flow and link capacity (3)

The problem formulation is

min
∑

(i,j)∈E

cijxij

subject to

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =


1 if i = s

0 if i ∈ N − {s, d}
−1 if i = d

fxij ≤ bij for all (i, j) ∈ E (∗ ∗ ∗)
xij ∈ {0, 1} for all (i, j) ∈ E

Note: (∗ ∗ ∗) — this constraint ensures that only links with sufficient
capacity may be chosen to carry the flow.
Solution: Eliminate edges with insufficient capacity, then Dijkstra.
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Multiple flows (1)

2

4

1

3

5

Flow 1: 8 Mbps

Given: Each link has capacity of 10 Mbps

Flow 2: 
8 Mbps

Assuming cost for each link is 1.
What if both flows use the shortest path?
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Multiple flows (2)

2

4

1

3

5

Flow 1: 8 Mbps

Given: Each link has capacity of 10 Mbps

Flow 2: 
8 Mbps

16 Mbps of flows on 10Mbps
⇒ Utilisation > 1, High packet delay and loss
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Traffic engineering problem

Given

A directed graph (N,E)

F m flows (indexed by k = 1, 2, ...m)
F Flow k has size fk, source node sk, destination dk
F It costs cij for a unit of flow to use directed edge (i, j)

The capacity of directed edge is bij

Find the directed edges that each flow should use in order that

The total cost is minimised
The entire flow must use only one path

F The total flow on a directed edge does not exceed its capacity
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Digression: Integral versus continuous traffic
engineering

There are two versions of traffic engineering problem

The integral version where each flow must use only one path, i.e.
all packets in a flow must use the same path

In order to ensure that the packets use a certain path, you can
use source routing (available in IP version 6) or MPLS (multi-
protocol label switching - covered in COMP9332)

The continuous version where each flow may use multiple paths,
e.g. the one described on pages 5 – 6 of this lecture.

In order to split the flow, a classifier will be required at the router
to send packets on different paths

We will see how we can formulate the integral traffic engineering
problem
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Traffic engineering IP formulation (1)

Decision variables: m sets of decision variables, one for each flow

xijk =

{
1 if flow k uses directed edge (i, j)

0 otherwise

The flow on directed edge (i, j) will be

m∑
k=1

fkxijk

Ex: m = 3. Flows 1 and 3 use edge (1,2) but flow 2 doesn’t.

Total flow in edge (1,2) = f1 + f3∑m
k=1 fkx12k = f1 × x121︸︷︷︸

=1

+f2 × x122︸︷︷︸
=0

+f3 × x123︸︷︷︸
=1

= f1 + f3
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Traffic engineering IP formulation (2)
The problem formulation is

min
∑

(i,j)∈E

m∑
k=1

cijfkxijk

subject to

∑
j:(i,j)∈E

xijk −
∑

j:(j,i)∈E

xjik =


1 if i = sk
0 if i ∈ N − {sk, dk}
−1 if i = dk

k = 1, ...,m (∗)

m∑
k=1

fkxijk ≤ bij for all (i, j) ∈ E (∗∗)

xijk ∈ {0, 1} for all (i, j) ∈ E, k = 1, ...,m

(∗) – One set of flow balance constraint per flow. Enforces flow k is
from sk to dk
(∗∗) – Total flow on a link does not exceed its capacity.
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AMPL Example

2

4

1

3

5

Flow 1: 8 Mbps

Given: Each link has capacity of 10 Mbps

Flow 2: 
8 Mbps

Assuming cost for each link is 1.
What if both flows use the shortest path?

Files are mcf1.dat, mcf1.mod and mcf1_batch,
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Traffic engineering problem

Also known as

The multi-commodity flow problem in operations research
Flow assignment problem

Essence: assign a flow to a path so that performance is met

i.e. routing problem

Many variations possible

Constraint on the path delay / number of hops
Constraint on packet loss rate
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Network design problem(1)

2

4

1

3

5

Flow 1: 8 Mbps

In flow assignment, we assume the network topology and 
link capacities are given.

Flow 2: 
8 Mbps

Why should we choose capacity 10Mbps? Why not 100Mbps?
Why should we choose to have a link between (2,3) but not
(2,5)? 
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Network design problem(2)

Given

A set of nodes N

m flows of size fk, source sk, destination dk
Maximum network building cost

Design options in network design problems

Topology: Which directed links to include
Capacity of the link
How the flows are routed?

There are a few different network design problems
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Different network design problems

Flow Assignment Problem

Given: flows, topology, capacity
Find: paths for the flows

Capacity and Flow Assignment Problem

Given: flows, topology, network cost
Find: paths for the flows, capacity

Topology, Capacity and Flow Assignment Problem

Given: flows, network cost
Find: paths for the flows, capacity, topology
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Power of binary variables

Not only for making yes-or-no type of decisions, binary variables
can be used to capture many other requirements

Restricted range of values
Either-or constraints
If-then constraints
Piecewise linear functions
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Restricted range of values

Some variables can only take certain values

E.g. network links can only be of capacity 155 Mbps, 466 Mbps,
622 Mbps, etc

If decision variable x can only take values from {a1, a2, ..., am},
this can be modeled by using an additional set of binary decision
variables

yi =

{
1 if ai is used
0 otherwise

Page 36



Restricted range of values

Then, the above requirement can be captured by

x =

m∑
i=1

aiyi

m∑
i=1

yi = 1

yi ∈ {0, 1}

E.g. if a1 = 155, a2 = 466, a3 = 622, we have

y1 = 1 ⇒ y2 = y3 = 0 ⇒ x = 155

y2 = 1 ⇒ y1 = y3 = 0 ⇒ x = 466

y3 = 1 ⇒ y1 = y2 = 0 ⇒ x = 622
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Either-or constraints

A Cloud computing service provider offers 3 different packages with
different speed and cost for each package. You can buy any cycles
from any package but the deal requires that

# cycles from Package 1 + # cycles from Package 2 ≥ 10000, or,
# cycles from Package 2 + # cycles from Package 3 ≥ 50000

At least one of these two inequalities must hold,
but not necessarily both

Let wi = number of cycles to be bought from Package i
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Either-or constraints (cont.)

The above requirement can be captured by using an additional
binary decision variable p

w1 + w2 ≥ 10000p

w2 + w3 ≥ 50000(1− p)

p ∈ {0, 1}
wi ≥ 0, i = 1, 2, 3

Case 1: p = 0, we have

w1 + w2 ≥ 0← Trivially satisfied
w2 + w3 ≥ 50000

wi ≥ 0, i = 1, 2, 3

Case 2: p = 1, we have

w1 + w2 ≥ 10000
w2 + w3 ≥ 0← Trivially satisfied

wi ≥ 0, i = 1, 2, 3
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Either-or constraints (cont.)

In general, if one of the following two constraints must be satisfied
n∑

i=1

a1,ixi ≥ b1

n∑
i=1

a2,ixi ≥ b2

where aj,i are given parameters, xi(≥ 0) are decision variables, bj
are scalar, then the either-or constraints can be modeled by

n∑
i=1

a1,ixi ≥ b1p

n∑
i=1

a2,ixi ≥ b2(1− p)

p ∈ {0, 1}
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If-then constraints

We may want to impose if-then constraints, e.g.

if x1 + x2 > 1, then y ≥ 4

where x1, x2 are binary variables, and 0 ≤ y ≤ 10

The above if-then constraint can be captured by using an additional
binary decision variable p

x1 + x2 − 1 ≤ 1− p

−y + 4 ≤ 4p

p ∈ {0, 1}
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If-then constraints (cont.)

To understand how this works, consider the two cases:

Case 1: If x1 + x2 > 1 holds
Since x1 + x2 > 1, x1 + x2 − 1 > 0

Since p can only be 1 or 0, the inequality constraint x1+x2−1 ≤
1− p forces p to be 0
Since p = 0, from the inequality constraint −y + 4 ≤ 4p, we
have y ≥ 4 which is the condition that we want to impose when
x1 + x2 > 1 holds

Case 2: If x1 + x2 > 1 does not hold
In this case, since x1 + x2 − 1 ≤ 0, p can be either 0 or 1
If p = 0, the inequality constraint −y + 4 ≤ 4p becomes y ≥ 4

If p = 1, the inequality constraint −y + 4 ≤ 4p becomes y ≥ 0

Thus, p can be chosen such that there is no restriction on the
value of y
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If-then constraints (cont.)

In general, the if-then constraint

if f(x1, x2, . . . , xn) > 0, then g(x1, x2, . . . , xn) ≥ 0

can be modeled by

f(x1, x2, . . . , xn) ≤ M1(1− p)

−g(x1, x2, . . . , xn) ≤ M2 p

where p is a binary variable, M1 and M2 are constants chosen large
enough such that f(x1, x2, . . . , xn) ≤ M1 and −g(x1, x2, . . . , xn) ≤
M2 hold for all possible choices of x1, x2, . . . , xn

Page 43



Piecewise linear functions

We can use binary variables to model piecewise linear functions

Example: A Cloud computing service provider may use a
progressive charging scheme

5 dollars/sec for the first 5,000 sec
2 dollars/sec for the next 15,000 sec
1 dollar/sec thereafter
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Piecewise linear functions (cont.)

c = 55000 + (t−20000)

0 200005000

Time t (s)

25000

55000

Cost c ($)

c = 25000 + 2(t−5000) 

c = 5t 

Decision variables

yi =

{
1 if segment i is used
0 otherwise

Segment 1: 0 ≤ t ≤ 5000, cost = 5t

Segment 2: 5000 ≤ t ≤ 20000, cost = 2t + 15000
Segment 3: 20000 ≤ t, cost = t + 35000
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Piecewise linear functions (cont.)

We have

y1 = 1⇒ 0 ≤ t ≤ 5000 and cost = 5t

y2 = 1⇒ 5000 ≤ t ≤ 20000 and cost = 2t + 15000
y3 = 1⇒ 20000 ≤ t and cost = t + 35000
y1 + y2 + y3 = 1

We can rewrite these as

0 ≤ ty1 ≤ 5000y1
5000y2 ≤ ty2 ≤ 20000y2
20000y3 ≤ ty3
cost = y1(5t) + y2(2t+ 15000) + y3(t+ 35000)

y1 + y2 + y3 = 1

Problem: non-linear constraints
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Piecewise linear functions (cont.)

Define ti = tyi for i = 1, 2, 3

cost = 5t1 + 2t2 + 15000y2 + t3 + 35000y3
0 ≤ t1 ≤ 5000y1
5000y2 ≤ t2 ≤ 20000y2
20000y3 ≤ t3 ≤My3
y1 + y2 + y3 = 1

t = t1 + t2 + t3

Note

ti is non-zero if the corresponding yi = 1

M is a sufficiently large number to enforce
y3 = 0⇒ t3 = 0 and t3 ≥ 20000⇒ y3 = 1

This is a non-standard expression
An alternative expression can be found in Winston Chapter 9
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