
ENGG1811      © UNSW,  CRICOS Provider No: 00098G

ENGG1811 Computing for Engineers

Week 1
Introduction to Programming
and Python



Computers have changed engineering …

https://blog.sipa.it/pet-bottle-filling-machine-filling-techniques



Computers have changed engineering …



How computing is used in engineering?

• Automation is a major application of computing in 
engineering
– There are many other applications of computing in engineering. 

More to come. 
– Message: Computing will play a key role in addressing grand 

challenges in engineering, e.g., aging infrastructure, etc.
– http://www.engineeringchallenges.org

• Automation: Computers/machines repeatedly performing 
the same procedure 
– Procedure: a sequence of instructions   

http://www.engineeringchallenges.org/


Problem solving

• Engineering: invention, problem solving, …

• Problem solving requires you to understand how 
things work, test out ideas etc. 

• How can you use computers to solve problems for 
you?
– How can you use computers to understand, investigate, 

test and design? 



Programming

• If you come out with a method for the 
computer to solve a problem, you need to be 
able to tell the computer how to do it. 
– You need to give instructions to computers 

• Programming skill: The ability to give 
instructions to computers to perform the 
intended tasks 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 6 



A role-play game 

• We will play a game on giving instructions to 
“computers” 

• We need a volunteer or two volunteers working 
together 

• The lecturer will provide the instructions of this 
game

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 7 



Python

• Python will be the programming language that you 
will use to learn how to give instructions to 
computers

• It is a popular programming language and it 
comes with a lot of extra packages that help you 
to do engineering work 

• We use Python 3, not Python 2.  

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 8 



Spyder

• We will use a program called Spyder to develop, 
test and run Python programs

• Spyder is available on all UNSW CSE computers 
• You will also use Spyder in the lab
• If you want to use Spyder on your computer, your 

options are:
– Install Anaconda on your computer
– Use the UNSW CSE computers remotely. This 

requires Internet access. 
– More details in the Getting Started section of the 

course website   

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 9 



The Spyder Environment

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 10 

Buttons

Editor for developing 
Python programs

iPython Console
‘i’ is short for interactive 



Using the iPython Console

• We will simply call it the console
• You can use the console to do some simple 

programming 
• You do that by typing commands at the prompt

– Commands are instructions to tell the computers to do 
something 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 11 

The 
prompt

You type the command at the blinking cursor. After 
you’ve finished typing, use the Enter (or Return) key 
to tell the console to execute the commands.  



If you haven’t got Spyder yet, 

• You can use iPython Console online at:
– https://www.pythonanywhere.com/try-ipython/
– https://trinket.io/console

• We will only be using iPython Console today but we 
will use the editor in the next lecture. So make sure 
you install Anaconda before that. 
– Instructions on installing Anaconda for Python 3 can be 

found under Getting Started on the course website
– Notes for 24T3:

• Mac users are asked to install an earlier release of Anaconda
• Windows users should install the latest release 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 12 

https://www.pythonanywhere.com/try-ipython/
https://trinket.io/console


Using console to do arithmetic

• Type 3+4 at the console, as follows:

• And then type the Enter key
• The computer execute the instruction, which 

is to add 3 and 4 
• The console returns the answer 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 13 



ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 14 

Arithmetic Operators in Python

Operator Description
+ Addition or unary plus
– Subtraction or unary minus
* Multiplication
/ Floating point division
// Integer division (fraction discarded)
% Integer modulus (remainder)
** Exponentiation (power)



Exercises:

• Type the following at the prompt and then 
execute the command, observe what you get 
and try to understand the meaning of the 
arithmetic operators 
 2 * 4
 2 ** 4 
 10 / 7 
 10 // 7
 10 % 7 
 10 - -7 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 15 



Unary and binary operations

• + and – can be unary or binary
• For example, 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 16 

10   -   -7

Binary minus 
= Subtract 2 numbers

Unary minus 
= Negative sign



Precedence

• You can use the arithmetic operators to calculate 
complicated expressions

• You can type: 1 + 2 * 3 – 4
– Should this be 3 or 5? 

• The computers evaluate arithmetic expressions 
according to the rule of precedence

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 17 



ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 18 

Precedence

Operator
( )
** 

+ – (unary: sign)

* / % // 
+ - (binary) 

• When evaluating arithmetic expressions, order of 
evaluating operations determined by precedence

Lower precedence

Higher precedence

• You do not need to memorise this. Look it up when you 
need. We will give this to you in the exam. 



ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 19 

Evaluating Expressions –
Rules of Precedence

• When evaluating expressions, operations of higher 
precedence are performed before those of lower 
precedence
2 + 3 * 4 = 2 + (3 * 4) = 14

• If there are multiple operations with the same 
precedence 

– Case 1: Multiple **. Evaluate from right to left 

• Example:  4 ** 3 ** 2 = 4 ** (3 ** 2) = 262144

– Case 2: Other operators. Evaluate from left to right 

• Example: 30 // 4 % 2 = (30 // 4) % 2 = 7 % 2 = 1

• If unsure, use parentheses or test using a simple 
expression



Quiz: 

• You want to calculate: 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 20 

a) 20 / 5 / 2
b) 20 / 5 * 2
c) 20 / (5 * 2) 

• Which one can you not use?   



Quiz

• What is -2**2 in Python?

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 21 

a) 4          i.e. (-2)**2
b) -4         i.e. –(2**2)

 

Lower precedence

Higher precedenceOperator
( )
** 

+ – (unary: sign)

* / % // 
+ - (binary) 



An exception to the rule

• If a unary – or + is to the right of **, then the 
unary is evaluated first 

• 10**-2 = 0.01 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 22 



Variables and the assignment operator

• Type the following at the prompt and enter

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 23 

• You can use y again to do computation  

• We say we assign the 
value of 5 to the 
variable named y 

• We call = the 
assignment operator

• Each line of instructions 
is a Python statement



Programming element: Variables
• Variables are stored in computer memory
• A variable has a name and a value
• A mental picture is: 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 24 

A program manipulates variables to achieve its goal 

y 5
Variable name Value of variable

Note: This is a simplified view. We will introduce the 
more accurate view later in the course. 



Expressions of variables 

• You can combine variables in an expression
• Try this in the console:

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 25 

Old value of the 
variable d is 
overwritten



Execution of arithmetic expressions

• Variables are 
stored in 
memory 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 26 

b 2
Value of variablesName of variables

c 5
10d

 

 d =  c ** b
 

1. Look up the values of c and b
2. Compute c to the power of b
3. Store the result in the memory for d

• Since the value of d was 10 before executing d = c ** b, 
the value of d is overwritten and has become 25



Assignment errors

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 27 

You must assign a 
value to a variable 
before using it 

Order is important.
variable_name = expression 



Variable names are case sensitive / debugging

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 28 

• You should read the error message and try to understand what it means 
so that you can fix your own code later on
– Programmers use the term debugging to mean fixing the code. See below for 

a discussion on the origin of the term and a picture of the moth which 
apparently stopped a computer program from its execution 

– https://en.wikipedia.org/wiki/Debugging
• Don’t get upset if you get bugs in your code. It’s a fact of life in computer 

programming. What is important is you learn how to debug. 

https://en.wikipedia.org/wiki/Debugging


Don’t interpret assignment as equal sign

• In mathematics, the expression                     is a 
contradiction

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 29 

x = x + 10

• In computer programming, = is the assignment 
operator, so                      means the following 
operations

x = x + 10

Take the value of the variable x 
(which is 7), add 10 to it and 
assign the result (which is 17)  
to the variable x 



Quiz

• What is the value of the variable x after 
executing the following statements?

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 30 

x = 10
x = x + 2
x = x + 2
x = x + 2



Try yourselves

• You can also try these 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 31 

x = 10
x = x * x
x = x % 3
x = 2 / (x+7) 



Numbers and text

• Computers can handle numbers
– Engineering data are often in numbers 
– Data processing is important in engineering
– Numbers can also be used to represent

• Images: Photos, X-ray images, medical images 
• Videos, music, speeches etc. 

• Computers can also handle text 
– Data can also be in text 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 32 



Strings

• In Python, text is represented as strings
• Strings are always enclosed within a pair of 

matching single quotes or double quotes 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 33 



Strings: examples

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 34 

• The variable s is a string of one character
• The variable my_uni is a string with 4 characters 



String manipulations

• You can
– Concatenate strings using + 
– Repeat strings using * 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 35 

• Try the following yourselves



Limitation of the console

• You have used the console to 
– Assign variables
– Perform some simple computation
– Manipulate strings

• The console is good for testing one or few lines 
of statements

• A more powerful method is to put the Python 
statements into a file, or a Python program  

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 36 



Program to convert Fahrenheit to Celsius

• We will write a program to convert a 
temperature F in Fahrenheit to its equivalent 
temperature C in Celsius 

• The temperatures F and C are related by

• We will develop the program step by step
• We will type the program using the editor in 

Spyder 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 37 



The Spyder editor

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 38 

New file Save file Run file

Start typing in program here 



F to C conversion (version 1)

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 39 

• Tips: 
– Spyder gives a list of possible completions 
– The Tab key can complete variable name for you

• After typing the program, you should save it:
– Do give the program a meaningful name. 
– Organise files using folders
– Note that Python programs have the extension .py
– Don’t forget to save the file regularly when you work on Spyder 

• You can run the program using the run button 
• Results will be displayed in the console



The print function

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 40 

• print is a function in Python to display results
• Any text within single quotes will be displayed as is

– You can also use double quotes. They are strings.
• If print sees a variable name, it will display the 

value of the variable 
• The displayed output is the concatenation of the 

parts separated by commas



Program execution

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 41 

• This program consists of 3 statements
– At lines 9, 11 and 13

• The statements are executed in the order that they 
appear



ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 42 

Identifiers
Words like temp_celsius in the example 

program are called identifiers
– Identifiers are used for names of variables
– Identifiers are sequences of letters (a-z, A-Z), 

digits (0-9) and underscores (_)
– Identifier can only begin with a letter 
– Examples of valid identifiers
module1  x42   temp   y_origin

Quiz: Which of the following identifiers 
are valid? 

day 2day day_of_the_week day2 $24 see-saw 



ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 43 

Keywords

• Python has a number of keywords or reserved words 

• You cannot use them as variable names

• Don’t worry about memorising them now, you will see 
them a lot later on and will know them as your friends J 

https://www.programiz.com/python-programming/keywords-identifier



Rules for choosing identifiers

• Rule 1: Must be valid
• Rule 2: Avoid keywords

• The program will run if it doesn’t violate Rules 
1 and 2

• Rule 3: Choose meaningful identifiers 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 44 



ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 45 

Identifier Conventions

• Identifier conventions have been devised to make 
programs more readable
– Use meaningful variable names, most Python 

programmers use lower case words separated by 
underscore for readability
temperature    num_count     
mass_in_kg  is_within_normal_range

– OK to use short names for minor or short-lived data



Notes

• Software readability is an important issue. 
Here is a style guide to writing Python 
program, known as PEP8:
– https://www.python.org/dev/peps/pep-0008/
– ENGG1811 has its own style guide 

• Note that for some other computer 
languages, programmers use camel case as 
the style for identifiers
– Camel case: first word is all lower case, the first 

letter of subsequent words in upper case, e.g. 
isWithinNormalRange, thisYear   

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 46 

https://www.python.org/dev/peps/pep-0008/


F to C conversion (Version 2)

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 47 

• Comments are added to explain how a program works
– All text after the # symbol is comment

• Comments are ignored when a program is executed
• Comments are for people to read 



F to C conversion (version 3)

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 48 

• Fixed or constant values are often required at several 
places in a program

• By giving a name to the constant…
– The reader understands what the value means

• for example, only hard-core physicists would recognise 1.3806503e–
23 in a calculation (it’s Boltzmann’s constant)

• Name format convention: ALL_CAPS
• Define the constants at the beginning of the program



Why documenting a program

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 49 

• Say, you’ve written a program that does some 
fabulous work for you. It is possible that you may 
need to modify it a few months later. You may have 
difficulty figuring out how you did it earlier if you 
haven’t documented it 

• Use Python docstrings 



Python docstring

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 50 

• Docstring is enclosed with a pair of triple double 
quotes or triple single quotes 

• Spyder typesets it in green 
• The contents are comments, i.e., not executed 



ENGG1811      © UNSW,  CRICOS Provider No: 00098G W8 slide 51 

Documentation

• Begin with:
– Purpose, author, date

• Then data dictionary
– list of variables used and how they are used

• Then problem parameter assignments if 
applicable

• Program description, method
• Beware of the difference between purpose and method
• Purpose (what?). Method (how?)  

• Expectations:
– Lab programs must be reasonably documented
– Documentation carries marks in assignments 



Make the program more interactive

• We specify the temperature that we want to convert in Line 28  
• We want to make the program more interactive by prompting the user to 

enter the temperature
• We can do this using the input() function 

• The code is in the file conversion_interactive_prelim.py 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 52 



First attempt 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 53 

• Replace line 28 in 
conversion_interactive_prelim.py by the one 
shown above 

• The expression that the user enters will be 
assigned to the variable temp_fahrenheit 

• Let us run and see 



What is the error? 

• To understand why there is an error. We look at 
the variable explorer 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 54 

• The value is 80. That seems correct. 
• But, appearance can be a deception. 



Well, let’s step away. You’ve known for a long 
time that a word may have multiple meanings …

• The word python has two different meanings

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 55 

Meaning 1

• Same spelling but 
– Very different contexts
– Very different ways of handling 

Meaning 2



What went wrong

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 56 

This variable is 
a string

This line of code tries 
to subtract a number 
from a string



Data types

• Python (not the snake, in case you wonder which 
meaning it is J) defines different data types

• Different data types are handled differently
• Why data types? For error checking 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 57 

Looks like they are 
the same but no!



Python data types

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 58 

Data type Meaning
Integer No decimal point (+/-) 
Floating point With decimal (+/-) 
Complex number 
String Text



Python data types

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 59 

• Can use the 
function type() to 
check the data 
type of a variable 



Data type conversion
• You can convert from one data type to another

– str() converts the input to a string
– Similarly, int() and float()

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 60 



Fixing the program

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W5 slide 61 



Mathematical functions

• Standard Python has a limited set of maths 
operators: + - * /  //  % **

• Sometimes you want to use sin(), cos(), log(), 
exp(), etc. 

• In Python, these operations are found in the 
math library

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 62 



Example: Solving quadratic equation

• We will write a program to solve the quadratic 
equation 

• using the formula 

• We will use a function to compute the square 
root from the math library

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 63 

ax2 + bx+ c = 0

�b±
p
b2 � 4ac

2a



Python code 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 64 

• You must import the math library before using its functions
• Line 43 shows the usage of math.sqrt() which computes the 

square root

quadratic_prelim.py 



The math library

• The math library also contains functions for:
– Trigonometry and radian/degree conversion

• Radian is assumed 

– Exponential and log 
– Etc.

• The file math_examples.py contains examples
– Let us try some examples in the console 

• For a complete list, see
– https://docs.python.org/3/library/math.html
– https://www.programiz.com/python-

programming/modules/math
ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 65 

https://docs.python.org/3/library/math.html
https://www.programiz.com/python-programming/modules/math
https://www.programiz.com/python-programming/modules/math


Summary

• Spyder development environment
– iConsole, editor, program execution, saving files

• Programming
– Arithmetic operators and precedence 
– Variables and naming convention
– Assignment operator = 
– Statements are executed one after another in a 

computer program
– Writing computer programs in a file
– Data types and their conversion 
– The math library 

ENGG1811      © UNSW,  CRICOS Provider No: 00098G W4 slide 66 


