
NOTES ON PRIME NUMBER SIEVES

ERIC MARTIN

1. Eratosthenes’ sieve

Let N ≥ 2 be given.

In the first version of the sieve, we use a list meant to denote 0, 1, 2, 3, 4,. . .N , and we generate all prime numbers at
most equal to N by flagging to False:

• all positive multiples of p1 = 2 at most equal to N , 2 excepted;
• all positive multiples of p2 = 3 at most equal to N , 3 excepted;
• . . .
• all multiples of pk at most equal to N , pk excepted, where pk is the least number greater than p1, . . . , pk−1 not

flagged to False so far.
• . . .

For all k ≥ 1, pk is the kth prime number.

We stop when pk exceeds
√
N since the smallest prime factor of a nonprime number n is at least equal to

√
n.

At stage k, pk × 2, . . . , pk × pk−1 have been flagged to False when we did so with the multiples of p1, . . . , pk−1 at stage
1, . . . , k − 1, respectively. Hence at stage k, we flag to False the multiples of pk starting from p2k.

2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

In the second version of the sieve, we use a list L meant to denote 2, 3, 5, 7, 9,. . . , N or 2, 3, 5, 7, 9,. . . , N − 1
depending on whether N is odd or even, respectively, which saves half the space and avoids having to flag to False the
multiples of 2. Let n be an odd number. The index k of the representative of n in L is n−1

2 , hence the index of the

representative of n2 is n2−1
2 = (n−1)(n+1)

2 = n−1
2 2(n−1

2 + 1) = 2k(k + 1). Also, we only flag to False the odd multiples of
n: 3n, 5n, 7n. . . . So after having flagged to False a number a, we flag to False a + 2n, whose representative has index
a+2n−1

2 = a−1
2 + n = a−1

2 + 2k + 1, so we add 2k + 1 to the index of the representative of a.

3
2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

5
2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Date: Session 2, 2015.

2 ERIC MARTIN

2. Euler’s sieve

Note that Eratosthenes’ sieve can flag to False a composite number more than once. Euler’s sieve avoids this by removing
a number from the list rather than flagging it. We start with the list [2, 3, 4, 5, . . . , N], and we generate all prime numbers
at most equal to N by removing from the list:

• using 2, the first number in the list:
– 22, 23, 24,. . . , up to 2r for the largest r with 2r ≤ N ,
– 2× 3, 22 × 3, 23 × 3,. . . , up to 2r × 3 for the largest r with 2r × 3 ≤ N ,
– as 4 is no longer in the list, 2× 5, 22 × 5, 23 × 5,. . . , up to 2r × 5 for the largest r with 2r × 5 ≤ N ,
– as 6 is no longer in the list, 2× 7, 22 × 7, 23 × 7,. . . , up to 2r × 7 for the largest r with 2r × 7 ≤ N ,
– as 8 is no longer in the list, 2× 9, 22 × 9, 23 × 9,. . . , up to 2r × 9 for the largest r with 2r × 9 ≤ N ,
– . . .

• using 3, the next number in what remains of the list:
– 32, 33, 34,. . . , up to 3r for the largest r with 3r ≤ N ,
– as 4 is no longer in the list, 3× 5, 32 × 5, 33 × 5,. . . , up to 3r × 5 for the largest r with 3r × 5 ≤ N ,
– as 6 is no longer in the list, 3× 7, 32 × 7, 33 × 7,. . . , up to 3r × 7 for the largest r with 3r × 7 ≤ N ,
– as 8, 9 and 10 are no longer in the list, 3 × 11, 32 × 11, 33 × 11,. . . , up to 3r × 11 for the largest r with

3r × 11 ≤ N ,
– . . .

• . . .

We also stop when the next number in what remains in the list exceeds
√
N .

Note that if using 2, the first number in the list, we removed from the list:

• 2× 2,
• 2× 3,
• as 4 is no longer in the list, 2× 5,
• . . .

then 23 would incorrectly remain in the list.

At stage k, all strictly positive multiples of the kth prime number pk at most equal to N , with the exception of pk itself,
are removed from the list. This is verified by induction. Indeed, if during stage k, a number n in {2, 3, . . . , N} with
pkn ≤ N is not considered then:

• either n is smaller than pk, in which case it is a multiple of at least one of p1, . . . , pk−1, which implies that pk ×n
is also a multiple of at least one of p1, . . . , pk−1, so by inductive hypothesis, pk × n was removed from the list
during one of the previous stages,

• or n is greater than pk but no longer belongs to the list (it is a number such as 4, 6, 8 at stage 1, or a number
such as 4, 6, 8, 9, 10 at stage 2), in which case:

– either n was removed during one of the previous stages, hence n is a multiple of at least one of p1, . . . , pk−1,
which implies as in the previous case that pk × n was also removed from the list,

– or n is a multiple of pk which was removed earlier in the current stage, so n is a number of the form prkm for

some r ≥ 1 and some number m which was then found in what remained of the list, therefore pkn = pr+1
k m

was also removed from the list earlier in the current stage.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 2 3 5 7 9 11 13 15 17 19 21 23 25

3 2 3 5 7 11 13 17 19 23 25

5 2 3 5 7 11 13 17 19 23

Removing an element from an ordered list, keeping the remaining elements in order, is on average linear in the length of
the list. In the second version of the sieve, at every stage k, we create a set consisting of the numbers in what remains of
the list, and remove from the set all products at most equal to N of pk with a number at least equal to pk in what remains
of the list, that is, all multiples at most equal to N of pk that have not been removed at earlier stages as multiples of
numbers smaller than pk. The cost of every such removal is constant. At the end of each stage, we sort what remains of

NOTES ON PRIME NUMBER SIEVES 3

the set to get an updated version of what remains of the list, an operation which is of complexity n log(n) in the number
of elements in the set. This second version is more efficient than the first one, but still less efficient than the first version
of Eratosthenes’ sieve.

In the third version of the sieve, we use a list [Node(0),Node(1),Node(2),Node(3), . . . ,Node(N+1)] where for all n ≤ N+1,
Node(n) is an object consisting of the value n, a link “next” to N(n + 1) (None if n = N + 1), and a link “previous” to
N(n − 1) (None if n = 0). Removing a number n is achieved by letting Node(n).next.previous change from Node(n) to
Node(n).previous, and Node(n).previous.next change from Node(n) to Node(n).next; since n is accessed using n itself as
index of the list, the cost of removing n is constant. Accessing the number after a number n in what remains of the list
is done using Node(n).next, also an operation with a constant cost. This third version is more efficient than the second
one, but still less efficient than the first version of Eratosthenes’ sieve.

0

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

2

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

3

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

In the pictures above, we depict a link from A to B iff there is also a link from B to A, but the original link from 4 to 3,
the original link from 4 to 5, . . . , are not removed, and then the newly created link from 9 to 7, the newly created link
from 9 to 11, . . . , are not removed.

3. Sundaram’s sieve

We use a list L meant to denote 1, 3, 5, 7, 9,. . . , N or 1, 3, 5, 7, 9,. . . , N − 1 depending on whether N is even or odd,
respectively. We flag to False all odd numbers greater than 1 and at most equal to N whose representatives have indexes
of the form i + j + 2ij with 1 ≤ i ≤ j. Correctness is shown as follows. Let an odd number n greater than 1 and at most
equal to N be given. Write n = 2k + 1 (so k is the index of the representative of n in L). Then n is flagged to False iff k
is of the form i + j + 2ij, that is, iff n is equal to 2(i + j + 2ij) + 1, which is equal to (2i + 1)(2j + 1). We conclude by
observing that an odd number is prime iff it is not the product of two odd numbers greater than 1.

Note that if h is 1 plus the index of the last element of L, then when generating pairs (i, j), j is a valid index iff
i + j + 2ij < h, iff j < h−i

1+2i , iff j < d h−i
1+2ie.

COMP9021 Principles of Programming

