COMP1511 - Programming
Fundamentals

— Term 3, 2019 - Lecture 11 S

What did we learn last week?

Assignment 1

e Everything you need to know about CS Paint!
Characters and Strings

e Using letters and words in C
Memory and Pointers

e Memory addresses and how to use them

What are we covering today?

Command Line Arguments

e Adding information to our program when it runs

Professionalism

e Some important skills as a programmer

Pointers continued

e Directly addressing memory

Characters and Strings Recap

Our new variable type: char

e Represents a letter

e |salsoanumber, an ASCIl code, and we'll often use ints to represent a
character

e When used in arrays, they're referred to as strings

e Strings often end before the end of the array they're stored in

e When they do, we store a null terminator '\0' after the last character

Strings in Code

Strings are arrays of type char, but they have a convenient shorthand

// a string is an array of characters

char wordl[] = {'h','e','1",'1",'0"};

// but we also have a convenient shorthand
// that feels more like words

char word2[] = "hello";

Both of these strings will be created with 6 elements. The lettersh,e,1,1,0
and the null terminator \ 0

h | e I I o | \0

Command Line Arguments

Sometimes we want to give information to our program at the moment
when we run it

e The "Command Line" is where we type in commands into the terminal
e Arguments are another word for input parameters

$./program extra information 1 2 3

e This extra text we type after the name of our program can be passed into
our program as strings

Main functions that accept arguments

int main doesn't have to have void input parameters!

int main(int argc, char* argv[]) {

}

' THEN WHATISIT?
e argc will be an "argument count”

e This will be an integer of the number of words that w0 __1 7‘.
were typed in (including the program name)

e argv will be "argument values"

e This will be an array of strings where each string is one
of the words

An example of use of arguments

#include <stdio.h>

int main(int argc, char *argv[]) {
int i = 1;
printf ("Well actually %s says there's no such thing as ", argv[0]);
while (i < argc) {
fputs (argv[i], stdout)
print£(" ") ;
i++;
}
printf("\n");

Arguments in argv are always strings

But what if we want to use things like numbers?

e We can read the strings in, but we might want to process them

$./program extra information 1 2 3

e In this example, how do we read 1 2 3 as numbers?
e We can use a library function to convert the strings to integers!
e strtol () - "string to long integer" is from the stdlib.h

Code for transforming strings to ints

Adding together the command line arguments

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) ({
int total = 0;

int 1 = 1;

while (i < argc) {
total += strtol(argv[i], NULL, 10);
i++;

}

printf ("Total is %d.\n", total);

What does it mean to be a professional engineer?

Four pillars of being a professional: TRUSTME g

Communication
Teamwork
Resilience
Technical Skills

W=

o

~ 'MAPROFESSIONAL
imgflip.com

Communication

Does everyone

understand what you're |

working on?

—_’

—

’ I e - *
| Q
= '
|
| &
|
|

L
A M e i Al
GCOMMUNICATING - '
A WITH MACHINES -
|

EXPLAIN YOUR CODE] :
T0 A NON PROGRAMMER!

Communication

Making sure everyone understands what you're doing

Problem solving in teams involves shared understanding
In order to solve human problems, we must understand what people

need and how we can help them

The more we communicate with computers the more risk we have of
treating people like machines

The ability to explain our code is important to keep us on track

It's especially important to be able to explain your code to
non-programmers

Teamwork

Code is very rarely created alone

TEAMW“HK Teams that get along are usually more
successful than teams of pure skill

Teamwork

Code is very rarely created alone

Teamwork involves sharing and compromise

Can you work with other people’s ideas?

Can you follow someone else’s style and structure?

Can you adapt your structure so that other people can use it?

Can you provide support to your teammates?

Teams made of people who get along are usually more successful than
teams made of very skilled individuals!

80 HOUR WORK WEEK THIS IS FiNe.

Resilience

Work is hard. We need to look after ourselves

e You shouldn't have to "survive" your job
e Dealing with "impossible situations"
e Failure is inevitable, what counts is how you recover, not whether you fail

Technical Skills

How's your programming?

e Yes, this comes lastin the list

e |t'sstillimportant butit can't
be your only focus

e Still, we have the majority of
our degrees to learn technical
programming

More about Resilience and Surviving

You have an assignment due soon

e Success isn't about getting everything done
e It's about prioritising your effort so you don't have to do as much work!

Priorities:

What gets you the most marks with the least amount of time?
Code Style?

Clean, basic functionality?

There are more marks in the earlier stages than later

Aim for what you can achieve without burning out

Don’t Panic!

WORKING LIKE
CRAZY ON THE
HARDEST THING
YOU CAN THINK
OF AND THEN FAILING

Surviving is about acting rationally in
panicky situations

e Take a moment to breathe

e Figure out what your options are

e Break problems down into small bits

e Complete small pieces one at a time R

e Aim for whatever gets you enough FOR JUST ENOUGH
TO MAKE

YOURSELF HAPPY

Don’t Panic!

Surviving is about acting rationally in panicky situations

Take a moment to assess where you're up to
Figure out what your options are

Break everything down into small bits
Complete small pieces one at a time

Aim for whatever gets you the highest marks

Becoming a Professional

It doesn't have to happen yet... and it's always ongoing learning!

Remember to communicate with colleagues

Follow as well as lead when you're in a team

Look after yourself

And above all . ..

Care about yourself, the people around you and your work

Break Time

Learning something new is better than
being good at something!

Remember ... as nice as high marks are,
they're not the same as long term fulfilment

"I don't care who you are, where you're from,
what you've done . .. as long as you love C." -
The Backstreet Boys

Pointers Recap

Pointers are Memory Addresses

We'll use pointers to remember where variables are

The value stored in a pointer is an address in memory

* js used to declare a pointer

After it's created * is used to dereference a pointer - find the value of the
variable the pointer is "aimed at"

int i = 100;

// create a pointer called ip that points at
// an integer in the location of i

int *ip = &i;

Pointers in use

e & is used to find the address of a variable
e It can be used to assign an address to a pointer

int 1 = 100;

// create a pointer called ip that points at

// the location of i

int *ip = &i;

printf ("The value of the wvariable at %p is %d", ip, *ip);

Ok let's make a simple program

This program is called The Jumbler

e It will take some numbers as command line arguments
e |t will jumble them a little, changing their order
e Then it will print them back out

e We'll make some use of functions and pointers here!

What functions do we want?

Deciding how to split up your functionality

A function that reads the command line arguments as integers
A function that swaps two numbers

A function that swaps several numbers

A function that prints out our numbers

Converting our Command Line Arguments

We'll read the command line arguments and convert them to ints

e Note that we're ignoring the first element of arguments because we know

that it's the name of the program and not one of our numbers

void read args(int nums[MAX NUMS], char *arguments[], int argCount) ({
int 1 = 0;
while (i < MAX NUMS && i < argCount - 1) {
nums[i] = strtol (arguments[i + 1], NULL, 10);
it++;

Printing our numbers

This is a trivial function

e The onlyissue is that we might have to work with an array that isn't full
e So we use numCount to stop us early if necessary

void print nums (int nums[MAX NUMS], int numCount) {

int 1 = 0;

while (i < MAX NUMS && i < numCount) {
printf("%d ", nums[i]);
i++;

Using Pointers to swap variable values

A simple swap function

e This function doesn't even know whether the ints are in arrays or not
e |t seestwo memory locations containing ints
e and uses a temporary int variable to swap them

void swap_nums (int *numl, int *num2) {
int temp = *numl;
*numl = *num2;
*num2 = temp;

Jumble performs some swaps

This function just loops through and swaps a few numbers

e Thisis a good candidate for a function that could be changed or written
differently and just used by our main without thinking about it

void jumble (int nums[MAX NUMS], int numCount) {

int i = 0;
while (i < MAX NUMS && i < numCount) {
int J =1 * 2;

if (j < MAX NUMS && j < numCount) ({
swap nums (&nums[i] , &nums[]]);

}
i++;

Using all the functions in the main

A nice main makes use of its functions

e |It's very easy to read this main!
e |t shows its steps using its function names
e There isn't much code to dig through

int main(int argc, char *argv[]) {
int numbers[MAX NUMS];
read args (numbers, argv, argc);
jumble (numbers, argc - 1);
print nums (numbers, argc - 1);
return O;

What did we learn today?

Command Line Arguments

e Reading input that's typed in with the program command

Professionalism

e Being ready for a career in computing

Pointers in Functions

e Using pointers in a program with functions

