
COMP1511 - Programming
Fundamentals

Term 3, 2019 - Lecture 11

What did we learn last week?
Assignment 1

● Everything you need to know about CS Paint!

Characters and Strings

● Using letters and words in C

Memory and Pointers

● Memory addresses and how to use them

What are we covering today?
Command Line Arguments

● Adding information to our program when it runs

Professionalism

● Some important skills as a programmer

Pointers continued

● Directly addressing memory

Characters and Strings Recap
Our new variable type: char

● Represents a letter
● Is also a number, an ASCII code, and we'll often use ints to represent a

character
● When used in arrays, they're referred to as strings
● Strings often end before the end of the array they're stored in
● When they do, we store a null terminator '\0' after the last character

Strings in Code
Strings are arrays of type char, but they have a convenient shorthand

Both of these strings will be created with 6 elements. The letters h,e,l,l,o
and the null terminator \0

 // a string is an array of characters
 char word1[] = {'h','e','l','l','o'};
 // but we also have a convenient shorthand
 // that feels more like words
 char word2[] = "hello";

h e l l o \0

Command Line Arguments
Sometimes we want to give information to our program at the moment
when we run it

● The "Command Line" is where we type in commands into the terminal
● Arguments are another word for input parameters

● This extra text we type after the name of our program can be passed into
our program as strings

$./program extra information 1 2 3

Main functions that accept arguments
int main doesn't have to have void input parameters!

● argc will be an "argument count"
● This will be an integer of the number of words that

were typed in (including the program name)
● argv will be "argument values"
● This will be an array of strings where each string is one

of the words

int main(int argc, char* argv[]) {
}

An example of use of arguments

#include <stdio.h>

int main(int argc, char *argv[]) {
 int i = 1;
 printf("Well actually %s says there's no such thing as ", argv[0]);
 while (i < argc) {
 fputs(argv[i], stdout);
 printf(" ");
 i++;
 }
 printf("\n");
}

Arguments in argv are always strings
But what if we want to use things like numbers?

● We can read the strings in, but we might want to process them

● In this example, how do we read 1 2 3 as numbers?
● We can use a library function to convert the strings to integers!
● strtol() - "string to long integer" is from the stdlib.h

$./program extra information 1 2 3

Code for transforming strings to ints

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 int total = 0;

 int i = 1;
 while (i < argc) {
 total += strtol(argv[i], NULL, 10);
 i++;
 }
 printf("Total is %d.\n", total);

}

Adding together the command line arguments

What does it mean to be a professional engineer?
Four pillars of being a professional:

1. Communication
2. Teamwork
3. Resilience
4. Technical Skills

Communication
Does everyone
understand what you're
working on?

Communication
Making sure everyone understands what you’re doing

● Problem solving in teams involves shared understanding
● In order to solve human problems, we must understand what people

need and how we can help them
● The more we communicate with computers the more risk we have of

treating people like machines
● The ability to explain our code is important to keep us on track
● It’s especially important to be able to explain your code to

non-programmers

Teamwork
Code is very rarely created alone

Teams that get along are usually more
successful than teams of pure skill

Teamwork
Code is very rarely created alone

● Teamwork involves sharing and compromise
● Can you work with other people’s ideas?
● Can you follow someone else’s style and structure?
● Can you adapt your structure so that other people can use it?
● Can you provide support to your teammates?
● Teams made of people who get along are usually more successful than

teams made of very skilled individuals!

Resilience

Work is hard. We need to look after ourselves

● You shouldn't have to "survive" your job
● Dealing with "impossible situations"
● Failure is inevitable, what counts is how you recover, not whether you fail

Technical Skills
How’s your programming?

● Yes, this comes last in the list
● It's still important but it can't

be your only focus
● Still, we have the majority of

our degrees to learn technical
programming

More about Resilience and Surviving
You have an assignment due soon

● Success isn’t about getting everything done
● It’s about prioritising your effort so you don’t have to do as much work!

Priorities:

● What gets you the most marks with the least amount of time?
● Code Style?
● Clean, basic functionality?
● There are more marks in the earlier stages than later
● Aim for what you can achieve without burning out

Don’t Panic!
Surviving is about acting rationally in
panicky situations

● Take a moment to breathe
● Figure out what your options are
● Break problems down into small bits
● Complete small pieces one at a time
● Aim for whatever gets you enough

Don’t Panic!
Surviving is about acting rationally in panicky situations

● Take a moment to assess where you’re up to
● Figure out what your options are
● Break everything down into small bits
● Complete small pieces one at a time
● Aim for whatever gets you the highest marks

Becoming a Professional
It doesn't have to happen yet . . . and it's always ongoing learning!

● Remember to communicate with colleagues
● Follow as well as lead when you're in a team
● Look after yourself
● And above all . . .
● Care about yourself, the people around you and your work

Break Time
Learning something new is better than
being good at something!

Remember . . . as nice as high marks are,
they're not the same as long term fulfilment

"I don't care who you are, where you're from,
what you've done . . . as long as you love C." -
The Backstreet Boys

C

Pointers Recap
Pointers are Memory Addresses

● We'll use pointers to remember where variables are
● The value stored in a pointer is an address in memory
● * is used to declare a pointer
● After it's created * is used to dereference a pointer - find the value of the

variable the pointer is "aimed at"

 int i = 100;
 // create a pointer called ip that points at
 // an integer in the location of i
 int *ip = &i;

Pointers in use
● & is used to find the address of a variable
● It can be used to assign an address to a pointer

 int i = 100;
 // create a pointer called ip that points at
 // the location of i
 int *ip = &i;
 printf("The value of the variable at %p is %d", ip, *ip);

Ok let's make a simple program
This program is called The Jumbler

● It will take some numbers as command line arguments
● It will jumble them a little, changing their order
● Then it will print them back out

● We'll make some use of functions and pointers here!

What functions do we want?
Deciding how to split up your functionality

● A function that reads the command line arguments as integers
● A function that swaps two numbers
● A function that swaps several numbers
● A function that prints out our numbers

Converting our Command Line Arguments
We'll read the command line arguments and convert them to ints

● Note that we're ignoring the first element of arguments because we know
that it's the name of the program and not one of our numbers

void read_args(int nums[MAX_NUMS], char *arguments[], int argCount) {
 int i = 0;
 while (i < MAX_NUMS && i < argCount - 1) {
 nums[i] = strtol(arguments[i + 1], NULL, 10);
 i++;
 }
}

Printing our numbers
This is a trivial function

● The only issue is that we might have to work with an array that isn't full
● So we use numCount to stop us early if necessary

void print_nums(int nums[MAX_NUMS], int numCount) {
 int i = 0;
 while (i < MAX_NUMS && i < numCount) {
 printf("%d ", nums[i]);
 i++;
 }
}

Using Pointers to swap variable values
A simple swap function

● This function doesn't even know whether the ints are in arrays or not
● It sees two memory locations containing ints
● and uses a temporary int variable to swap them

void swap_nums(int *num1, int *num2) {
 int temp = *num1;
 *num1 = *num2;
 *num2 = temp;
}

Jumble performs some swaps
This function just loops through and swaps a few numbers

● This is a good candidate for a function that could be changed or written
differently and just used by our main without thinking about it

void jumble(int nums[MAX_NUMS], int numCount) {
 int i = 0;
 while (i < MAX_NUMS && i < numCount) {
 int j = i * 2;
 if (j < MAX_NUMS && j < numCount) {
 swap_nums(&nums[i], &nums[j]);
 }
 i++;
 }
}

Using all the functions in the main
A nice main makes use of its functions

● It's very easy to read this main!
● It shows its steps using its function names
● There isn't much code to dig through

int main(int argc, char *argv[]) {
 int numbers[MAX_NUMS];
 read_args(numbers, argv, argc);
 jumble(numbers, argc - 1);
 print_nums(numbers, argc - 1);
 return 0;
}

What did we learn today?
Command Line Arguments

● Reading input that's typed in with the program command

Professionalism

● Being ready for a career in computing

Pointers in Functions

● Using pointers in a program with functions

