
3. Branching Algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Contents

1 Introduction 1

2 Maximum Independent Set 3
2.1 Simple Analysis . 3
2.2 Search Trees and Branching Numbers . 5
2.3 Measure Based Analysis . 6
2.4 Optimizing the measure . 8
2.5 Exponential Time Subroutines . 9
2.6 Structures that arise rarely . 9

3 Max 2-CSP 10

4 Further Reading 10

1 Introduction

Recall: Maximal Independent Sets

• A vertex set S ⊆ V of a graph G = (V,E) is an independent set in G if there is no edge uv ∈ E with u, v ∈ S.

• An independent set is maximal if it is not a subset of any other independent set.

• Examples:

Enumeration problem: Enumerate all maximal independent sets

Enum-MIS
Input: graph G
Output: all maximal independent sets of G

a b

c d

1

Maximal independent sets: {a, d}, {b}, {c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from NG[v].

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G, I)
Input : A graph G = (V,E), an independent set I of G.
Output: All maximal independent sets of G that are supersets of I.

1 G′ ← G−NG[I]
2 if V (G′) = ∅ then // G′ has no vertex

3 Output I

4 else
5 Select v ∈ V (G′) such that dG′(v) = δ(G′) // v has min degree in G′

6 Run enum-mis(G, I ∪ {u}) for each u ∈ NG′ [v]

Running Time Analysis
Let us upper bound by L(n) = 2αn the number of leaves in any search tree of enum-mis for an instance with
|V (G′)| ≤ n.

We minimize α (or 2α) subject to constraints obtained from the branching:

L(n) ≥ (d+ 1) · L(n− (d+ 1)) for each integer d ≥ 0.

⇔ 2αn ≥ d′ · 2α·(n−d
′) for each integer d′ ≥ 1.

⇔ 1 ≥ d′ · 2α·(−d
′) for each integer d′ ≥ 1.

For fixed d′, the smallest value for 2α satisfying the constraint is d′1/d
′
. The function f(x) = x1/x has its maximum

value for x = e and for integer x the maximum value of f(x) is when x = 3.
Therefore, the minimum value for 2α for which all constraints hold is 31/3. We can thus set L(n) = 3n/3.

Since the height of the search trees is ≤ |V (G′)|, we obtain:

Theorem 1. Algorithm enum-mis has running time O∗(3n/3) ⊆ O(1.4423n), where n = |V |.

Corollary 2. A graph on n vertices has O(3n/3) maximal independent sets.

Running Time Lower Bound

· · ·

Theorem 3. There is an infinite family of graphs with Ω(3n/3) maximal independent sets.

Branching Algorithm

• Selection: Select a local configuration of the problem instance

• Recursion: Recursively solve subinstances

• Combination: Compute an optimal solution of the instance based on the optimal solutions of the subinstances

• Simplification rule: 1 recursive call

• Branching rule: ≥ 2 recursive calls

2

2 Maximum Independent Set

Maximum Independent Set
Input: graph G
Output: A largest independent set of G.

Branching Algorithm for Maximum Independent Set

Algorithm mis(G)
Input : A graph G = (V,E).
Output: The size of a maximum i.s. of G.

1 if ∆(G) ≤ 2 then // G has max degree ≤ 2
2 return the size of a maximum i.s. of G in polynomial time

3 else if ∃v ∈ V : d(v) = 1 then // v has degree 1
4 return 1 + mis(G−N [v])

5 else if G is not connected then
6 Let G1 be a connected component of G
7 return mis(G1) + mis(G− V (G1))

8 else
9 Select v ∈ V s.t. d(v) = ∆(G) // v has max degree

10 return max (1 + mis(G−N [v]),mis(G− v))

Correctness
Line 4:

Lemma 4. If v ∈ V has degree 1, then G has a maximum independent set I with v ∈ I.

Proof. Let J be a maximum independent set of G. If v ∈ J we are done because we can take I = J . If v /∈ J , then
u ∈ J , where u is the neighbor of v, otherwise J would not be maximum. Set I = (J \ {u}) ∪ {v}. We have that I
is an independent set, and, since |I| = |J |, I is a maximum independent set containing v.

2.1 Simple Analysis

Lemma 5 (Simple Analysis Lemma). Let

• A be a branching algorithm

• α > 0, c ≥ 0 be constants

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides the recursive calls, uses time
O(|I|c), such that

(∀i : 1 ≤ i ≤ k) |Ii| ≤ |I| − 1, and (1)

2α·|I1| + · · ·+ 2α·|Ik| ≤ 2α·|I|. (2)

Then A solves any instance I in time O(|I|c+1) · 2α·|I|.

3

Proof. By induction on |I|. W.l.o.g., suppose the hypotheses’ O statements hide a constant factor d ≥ 0, and for
the base case assume that the algorithm returns the solution to an empty instance in time d ≤ d · |I|c+12α·|I|.

Suppose the lemma holds for all instances of size at most |I| − 1 ≥ 0, then the running time of algorithm A on
instance I is

TA(I) ≤ d · |I|c +

k∑
i=1

TA(Ii) (by definition)

≤ d · |I|c +
∑

d · |Ii|c+12α·|Ii| (by the inductive hypothesis)

≤ d · |I|c + d · (|I| − 1)c+1
∑

2α·|Ii| (by (1))

≤ d · |I|c + d · (|I| − 1)c+12α·|I| (by (2))

≤ d · |I|c+12α·|I|.

The final inequality uses that α · |I| > 0 and holds for any c ≥ 0.

Simple Analysis for mis

• At each node of the search tree: O(n2)

• G disconnected: (1) If α · s < 1, then s < 1/α, and the algorithm solves G1 in constant time (provided that
α > 0). We can view this rule as a simplification rule, getting rid of G1 and making one recursive call on
G− V (G1). (2) If α · (n− s) < 1: similar as (1). (3) Otherwise,

(∀s : 1/α ≤ s ≤ n− 1/α) 2α·s + 2α·(n−s) ≤ 2α·n. (3)

always satisfied since the function 2x has slope ≥ 1 when x ≥ 1.

• Branch on vertex of degree d ≥ 3

(∀d : 3 ≤ d ≤ n− 1) 2α·(n−1) + 2α·(n−1−d) ≤ 2αn. (4)

Dividing all these terms by 2αn, the constraints become

2−α + 2α·(−1−d) ≤ 1. (5)

Compute optimum α
The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α
subject to the constraints (the constraint for d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2α, compute the unique positive real root of each of the characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and take the maximum of these roots [Kullmann ’99].

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

Simple Analysis: Result

• use the Simple Analysis Lemma with c = 2 and α = 0.464959

• running time of Algorithm mis upper bounded by O(n3) · 20.464959·n = O(20.4650·n) or O(1.3803n)

4

Lower bound

v1 v2 v3 v4 v5 v6 vn−1 vn

T (n) = T (n− 5) + T (n− 3)

• for this graph, P 2
n , the worst case running time is 1.1938 . . .n · poly(n)

• Run time of algo mis is Ω(1.1938n)

Worst-case running time — a mystery

What is the worst-case running time of Algorithm mis?

• lower bound Ω(1.1938n)

• upper bound O(1.3803n)

2.2 Search Trees and Branching Numbers

Search Trees

Denote µ(I) := α · |I|.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Example: execution of mis on a P 2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

Branching number: Definition

Consider a constraint

2µ(I)−a1 + · · ·+ 2µ(I)−ak ≤ 2µ(I).

Its branching number is

2−a1 + · · ·+ 2−ak ,

and is denoted by

(a1, . . . , ak) .

Clearly, any constraint with branching number at most 1 is satisfied.

5

Branching numbers: Properties

Dominance For any ai, bi such that ai ≥ bi for all i, 1 ≤ i ≤ k,

(a1, . . . , ak) ≤ (b1, . . . , bk) ,

as 2−a1 + · · ·+ 2−ak ≤ 2−b1 + · · ·+ 2−bk .
In particular, for any a, b > 0,

either (a, a) ≤ (a, b) or (b, b) ≤ (a, b) .

Balance If 0 < a ≤ b, then for any ε such that 0 ≤ ε ≤ a,

(a, b) ≤ (a− ε, b+ ε)

by convexity of 2x.

2.3 Measure Based Analysis

• Goal

– capture more structural changes when branching into subinstances

• How?

– potential-function method, a.k.a., Measure & Conquer

• Example: Algorithm mis

– advantage when degrees of vertices decrease

Measure
Instead of using the number of vertices, n, to track the progress of mis, let us use a measure µ of G.

Definition 6. A measure µ for a problem P is a function from the set of all instances for P to the set of non
negative reals.

Let us use the following measure for the analysis of mis on graphs of maximum degree at most 5:

µ(G) =

5∑
i=0

ωini,

where ni := |{v ∈ V : d(v) = i}|.

Measure Based Analysis

Lemma 7 (Measure Analysis Lemma). Let

• A be a branching algorithm

• c ≥ 0 be a constant, and

• µ(·), η(·) be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides the recursive calls, uses time
O(η(I)c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (6)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (7)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

6

Analysis of mis for degree at most 5
For µ(G) =

∑5
i=0 ωini to be a valid measure, we constrain that

wd ≥ 0 for each d ∈ {0, . . . , 5}

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the
degree-1 simplification rule and the branching rule):

−ωd + ωd−1 ≤ 0 for each d ∈ {1, . . . , 5}

Lines 1–2 is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma 7.
Lines 3–4 of mis need to satisfy (7).
The simplification rule removes v and its neighbor u. We get a constraint for each possible degree of u:

2µ(G)−ω1−ωd ≤ 2µ(G) for each d ∈ {1, . . . , 5}
⇔ 2−ω1−ωd ≤ 20 for each d ∈ {1, . . . , 5}
⇔ −ω1 − ωd ≤ 0 for each d ∈ {1, . . . , 5}

These constraints are always satisfied since ωd ≥ 0 for each d ∈ {0, . . . , 5}. Note: the degrees of u’s other neighbors
(if any) decrease, but this degree change does not increase the measure.

For lines 5–7 of mis we consider two cases.
If µ(G1) < 1 (or µ(G− V (G1)) < 1, which is handled similarly), then we view this rule as a simplification rule,

which takes polynomial time to compute mis(G1), and then makes a recursive call mis(G − V (G1)). To ensure
that instances with measure < 1 can be solved in polynomial time, we constrain that

wd > 0 for each d ∈ {3, 4, 5}

and this will be implied by other constraints.
Otherwise, µ(G1) ≥ 1 and µ(G− V (G1)) ≥ 1, and we need to satisfy (7). Since µ(G) = µ(G1) + µ(G− V (G1)),

the constraints

2µ(G1) + 2µ(G−V (G1)) ≤ 2µ(G)

are always satisfied since the slope of the function 2x is at least 1 when x ≥ 1. (I.e., we get no new constraints on
ω1, . . . , ω5.)

Lines 8–10 of mis need to satisfy (7). We know that in G−N [v], some vertex of N2[v] has its degree decreased
(unless G has at most 6 vertices, which can be solved in constant time). Define

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

We obtain the following constraints:

2µ(G)−wd−
∑d

i=2 pi·(wi−wi−1) + 2µ(G)−wd−
∑d

i=2 pi·wi−hd ≤ 2µ(G)

⇔ 2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

for all d, 3 ≤ d ≤ 5 (degree of v), and all pi, 2 ≤ i ≤ d, such that
∑d
i=2 pi = d (number of neighbors of degree i).

Applying the lemma
Our constraints

wd ≥ 0

−ωd + ωd−1 ≤ 0

2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

7

are satisfied by the following values:
i wi hi
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

These values for wi satisfy all the constraints and µ(G) ≤ 2n/5 for any graph of max degree ≤ 5. Taking c = 2
and η(G) = n, the Measure Analysis Lemma shows that mis has run time O(n3)22n/5 = O(1.3196n) on graphs of
max degree ≤ 5.

2.4 Optimizing the measure

Compute optimal weights

• By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for hd

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

�

(∀i, d : 2 ≤ i ≤ d ≤ 5) hd ≤ wi − wi−1.

Use existing convex programming solvers to find optimum weights.

Convex program in AMPL

param maxd integer = 5;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i
var Wmax; # maximum weight of W[d]

minimize Obj: Wmax; # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];

subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];

subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];

subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] -p2*g[2] -p3*g[3]) + 2^(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;

subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])

+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :

p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;

Optimal weights

i wi hi
1 0 0
2 0.206018 0.206018
3 0.324109 0.118091
4 0.356007 0.031898
5 0.358044 0.002037

• use the Measure Analysis Lemma with µ(G) =
∑5
i=1 wini ≤ 0.358044 · n, c = 2, and η(G) = n

• mis has running time O(n3)20.358044·n = O(1.2817n)

8

2.5 Exponential Time Subroutines

Lemma 8 (Combine Analysis Lemma). Let

• A be a branching algorithm and B be an algorithm,

• c ≥ 0 be a constant, and

• µ(·), µ′(·), η(·) be three measures for the instances of A and B,

such that µ′(I) ≤ µ(I) for all instances I, and on input I, A either solves I by invoking B with running time
O(η(I)c+1) · 2µ

′(I), or calls itself recursively on instances I1, . . . , Ik, but, besides the recursive calls, uses time
O(η(I)c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (8)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (9)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

Algorithm mis on general graphs

• use the Combine Analysis Lemma with A = B = mis, c = 2, µ(G) = 0.35805n, µ′(G) =
∑5
i=1 wini, and

η(G) = n

• for every instance G, µ′(G) ≤ µ(G) because ∀i, wi ≤ 0.35805

• for each d ≥ 6,

(0.35805, (d+ 1) · 0.35805) ≤ 1

• Thus, Algorithm mis has running time O(1.2817n) for graphs of arbitrary degrees

2.6 Structures that arise rarely

Rare Configurations

• Branching on a local configuration C does not influence overall running time if C is selected only a constant
number of times on the path from the root to a leaf of any search tree corresponding to the execution of the
algorithm

• Can be proved formally by using measure

µ′(I) :=

{
µ(I) + c if C may be selected in the current subtree

µ(I) otherwise.

Avoid branching on regular instances in mis

else
Select v ∈ V such that

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of

minimum degree
return max (1 + mis(G−N [v]),mis(G− v))

New measure:

µ′(G) = µ(G) +

5∑
d=3

[G has a d-regular subgraph] · Cd

where Cd, 3 ≤ d ≤ 5, are constants. The Iverson bracket [F] =

{
1 if F true

0 otherwise

9

Resulting Branching numbers
For each d, 3 ≤ d ≤ 5 and all pi, 2 ≤ i ≤ d such that

∑d
i=2 pi = d and pd 6= d,

(
wd +

d∑
i=2

pi · (wi − wi−1), wd +

d∑
i=2

pi · wi + hd

)
.

All these branching numbers are at most 1 with the optimal set of weights

Result

i wi hi
1 0 0
2 0.207137 0.207137
3 0.322203 0.115066
4 0.343587 0.021384
5 0.347974 0.004387

Thus, the modified Algorithm mis has running time O(20.3480·n) = O(1.2728n).

Current best algorithm for MIS: O(1.1996n) [Xiao, Nagamochi ’13]

3 Max 2-CSP

Max 2-CSP generalizes Maximum Independent Set

Max 2-CSP
Input: A graph G = (V,E) and a set S of score functions containing

• a score function se : {0, 1}2 → N0 for each edge e ∈ E,

• a score function sv : {0, 1} → N0 for each vertex v ∈ V , and

• a score “function” s∅ : {0, 1}0 → N0 (which takes no arguments and is just a constant conve-
nient for bookkeeping).

Output: The maximum score s(φ) of an assignment φ : V → {0, 1}:

s(φ) := s∅ +
∑
v∈V

sv(φ(v)) +
∑
uv∈E

suv(φ(u), φ(v)).

4 Further Reading

• Chapter 2, Branching in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

• Chapter 6, Measure & Conquer in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Springer, 2010.

• Chapter 2, Branching Algorithms in Serge Gaspers. Exponential Time Algorithms: Structures, Measures,
and Bounds. VDM Verlag Dr. Mueller, 2010.

10

	Introduction
	Maximum Independent Set
	Simple Analysis
	Search Trees and Branching Numbers
	Measure Based Analysis
	Optimizing the measure
	Exponential Time Subroutines
	Structures that arise rarely

	Max 2-CSP
	Further Reading

