
8. Parameterized intractability: the W-hierarchy

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

Contents

1 Reminder: Polynomial Time Reductions and NP-completeness 1

2 Parameterized Complexity Theory 2
2.1 Parameterized reductions . 2
2.2 Parameterized complexity classes . 3

3 Case studies 5

4 Further Reading 7

1 Reminder: Polynomial Time Reductions and NP-completeness

Polynomial-time reduction

Definition 1. A polynomial-time reduction from a decision problem Π1 to a decision problem Π2 is a polynomial-
time algorithm, which, for any instance of Π1 produces an equivalent instance of Π2.
If there exists a polynomial-time reduction from Π1 to Π2, we say that Π1 is polynomial-time reducible to Π2 and
write Π1 ≤P Π2.

New polynomial-time algorithms via reductions

Lemma 2. If Π1,Π2 are decision problems such that Π1 ≤P Π2, then Π2 ∈ P implies Π1 ∈ P .

NP-completeness

Definition 3 (NP-hard). A decision problem Π is NP-hard if Π′ ≤P Π for every Π′ ∈ NP.

Definition 4 (NP-complete). A decision problem Π is NP-complete (in NPC) if

1. Π ∈ NP, and

2. Π is NP-hard.

Proving NP-completeness

Lemma 5. If Π is a decision problem such that Π′ ≤P Π for some NP-hard decision problem Π′, then Π is NP-hard.
If, in addition, Π ∈ NP, then Π ∈ NPC.

Method to prove that a decision problem Π is NP-complete:

1. Prove Π ∈ NP

2. Prove Π is NP-hard.

• Select a known NP-hard decision problem Π′.

1

• Describe an algorithm that transforms every instance I of Π′ to an instance r(I) of Π.

• Prove that for each instance I of Π′, we have that I is a Yes-instance of Π′ ⇔ r(I) is a Yes-instance of
Π.

• Show that the algorithm runs in polynomial time.

2 Parameterized Complexity Theory

Main Parameterized Complexity Classes
n: instance size
k: parameter

P: class of problems that can be solved in nO(1) time
FPT: class of parameterized problems that can be solved in f(k) · nO(1) time
W[·]: parameterized intractability classes
XP: class of parameterized problems that can be solved in f(k)·ng(k) time (“polynomial when k is a constant”)

P ⊆ FPT ⊆W[1] ⊆W[2] · · · ⊆W[P] ⊆ XP

Note: We assume that f is computable and non-decreasing.

Polynomial-time reductions for parameterized problems?
A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

An independent set in a graph G = (V,E) is a subset of vertices S ⊆ V such that there is no edge uv ∈ E with
u, v ∈ S.

Independent Set
Input: Graph G, integer k
Parameter: k
Question: Does G have an independent set of size k?

• We know: Independent Set ≤P Vertex Cover

• However: Vertex Cover ∈ FPT but Independent Set is not known to be in FPT

We will need another type of reductions

• Issue with polynomial-time reductions: parameter can change arbitrarily

• We will want the reduction to produce an instance where the parameter is bounded by a function of the
original instance

• Also: we can allow the reduction to take FPT time instead of only polynomial time.

2.1 Parameterized reductions

Parameterized reduction

Definition 6. A parameterized reduction from a parameterized decision problem Π1 to a parameterized decision
problem Π2 is an algorithm, which, for any instance I of Π1 with parameter k produces an instance I ′ of Π2 with
parameter k′ such that

• I is a Yes-instance for Π1 ⇔ I ′ is a Yes-instance for Π2,

2

• there exists a computable function g such that k′ ≤ g(k), and

• there exists a computable function f such that the running time of the algorithm is f(k) · |I|O(1).

If there exists a parameterized reduction from Π1 to Π2, we write Π1 ≤FPT Π2.

Note: We can assume that f and g are non-decreasing.

New FPT algorithms via reductions

Lemma 7. If Π1,Π2 are parameterized decision problems such that Π1 ≤FPT Π2, then Π2 ∈ FPT implies Π1 ∈ FPT.

Proof. Exercise.

Exercise
A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals

(a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one
positive literal. For a CNF formula F and an assignment τ : S → {0, 1} to a subset S of its variables, the formula
F [τ] is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing
all literals that evaluate to 0 from the remaining clauses.

HORN-Backdoor Detection
Input: A CNF formula F and an integer k.
Parameter: k
Question: Is there a subset S of the variables of F with |S| ≤ k such that for each assignment τ : S → {0, 1},

the formula F [τ] is a HORN formula?

Example: (¬a∨ b∨ c)∧ (b∨¬c∨¬d)∧ (a∨ b∨¬e)∧ (¬b∨ c∨¬e) with k = 1 is a Yes-instance, certified by S = {b}.

• Show that HORN-Backdoor Detection is FPT using the fact that Vertex Cover is FPT.

2.2 Parameterized complexity classes

Boolean Circuits

Definition 8. A Boolean circuit is a directed acyclic graph with the nodes labeled as follows:

• every node of in-degree 0 is an input node,

• every node with in-degree 1 is a negation node (¬), and

• every node with in-degree ≥ 2 is either an AND-node (∧) or an OR-node (∨).

Moreover, exactly one node with out-degree 0 is also labeled the output node.
The depth of the circuit is the maximum length of a directed path from an input node to the output node.
The weft of the circuit is the maximum number of nodes with in-degree ≥ 3 on a directed path from an input node
to the output node.

Example

a b c d e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧
out

A depth-3, weft-1 Boolean circuit with inputs a, b, c, d, e.

3

Weighted Circuit Satisfiability
Given an assignment of Boolean values to the input gates, the circuit determines Boolean values at each node in
the obvious way.
If the value of the output node is 1 for an input assignment, we say that this assignment satisfies the circuit.
The weight of an assignment is its number of 1s.

Weighted Circuit Satisfiability (WCS)

Input: A Boolean circuit C, an integer k
Parameter: k
Question: Is there an assignment with weight k that satisfies C?

Exercise: Show that Weighted Circuit Satisfiability ∈ XP.

WCS for special circuits

Definition 9. The class of circuits Ct,d contains the circuits with weft ≤ t and depth ≤ d.

For any class of circuits C, we can define the following problem.

WCS[C]
Input: A Boolean circuit C ∈ C, an integer k
Parameter: k
Question: Is there an assignment with weight k that satisfies C?

W classes

Definition 10 (W-hierarchy). Let t ∈ {1, 2, . . . }. A parameterized problem Π is in the parameterized complexity
class W[t] if there exists a paramterized reduction from Π to WCS[Ct,d] for some constant d ≥ 1.

Independent Set and Dominating Set

Theorem 11. Independent Set ∈W[1].

Theorem 12. Dominating Set ∈W[2].

Recall: A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such that NG[S] = V .

Dominating Set
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a dominating set of size at most k?

“Proof” by picture
Parameterized reductions from Independent Set to WCS[C1,3] and from Dominating Set to WCS[C2,2].

a

b c

d e a b c d e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧
out

a b c d e

∨ ∨ ∨ ∨ ∨

∧
out

Setting an input node to 1 corresponds to adding the corresponding vertex to the independent set / dominating
set.

4

W-hardness

Definition 13. Let t ∈ {1, 2, . . . }. A parameterized decision problem Π is W[t]-hard if for every parameterized
decision problem Π′ in W[t], there is a parameterized reduction from Π′ to Π. Π is W[t]-complete if Π ∈W[t] and
Π is W[t]-hard.

It has been proved that Independent Set is W[1]-hard and Dominating Set is W[2]-hard. Therefore,

Theorem 14. Independent Set is W[1]-complete.

Theorem 15. Dominating Set is W[2]-complete.

Proving W-hardness
To show that a parameterized decision problem Π is W[t]-hard:

• Select a W[t]-hard problem Π′

• Show that Π′ ≤FPT Π by designing a parameterized reduction from Π′ to Π

– Design an algorithm, that, for any instance I ′ of Π′ with parameter k′, produces an equivalent instance
I of Π with parameter k

– Show that k is upper bounded by a function of k′

– Show that there exists a function f such that the running time of the algorithm is f(k′) · |I ′|O(1)

3 Case studies

Clique
A clique in a graph G = (V,E) is a subset of its vertices S ⊆ V such that every two vertices from S are adjacent
in G.

Clique

Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have a clique of size k?

• We will show that Clique is W[1]-hard by a parameterized reduction from Independent Set.

Lemma 16. Independent Set ≤FPT Clique.

Proof. Given any instance (G = (V,E), k) for Independent Set, we need to describe an FPT algorithm that
constructs an equivalent instance (G′, k′) for Clique such that k′ ≤ g(k) for some computable function g.
Construction. Set k′ ← k and G′ ← G = (V, {uv : u, v ∈ V, u 6= v, uv /∈ E}).
Equivalence. We need to show that (G, k) is a Yes-instance for Independent Set if and only if (G′, k′) is a
Yes-instance for Clique.
(⇒): Let S be an independent set of size k in G. For every two vertices u, v ∈ S, we have that uv /∈ E. Therefore,
uv ∈ E(G) for every two vertices in S. We conclude that S is a clique of size k in G.
(⇐): Let S be a clique of size k in G. By a similar argument, S is an independent set of size k in G.
Parameter. k′ ≤ k.
Running time. The construction can clearly be done in FPT time, and even in polynomial time.

Corollary 17. Clique is W[1]-hard

5

Exercise
Recall: A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} assigning colors to V such that no
two adjacent vertices receive the same color.

Multicolor Clique

Input: A graph G = (V,E), an integer k, and a k-coloring of G
Parameter: k
Question: Does G have a clique of size k?

• Show that Multicolor Clique is W[1]-hard.

Hint: Reduce from Clique, and create k copies of V , each one being an independent set in G′. Add edges to
enforce constraints that a clique of size k in G′ corresponds to a clique of size k in G, and vice-versa.

Exercise
A set system S is a pair (V,H), where V is a finite set of elements and H is a set of subsets of V .
A set cover of a set system S = (V,H) is a subset X of H such that each element of V is contained in at least one
of the sets in X, i.e.,

⋃
Y ∈X Y = V .

Set Cover
Input: A set system S = (V,H) and an integer k
Parameter: k
Question: Does S have a set cover of cardinality at most k?

• Show that Set Cover is W[2]-hard.

Hint: Reduce from Dominating Set.

Exercise
A hitting set of a set system S = (V,H) is a subset X of V such that X contains at least one element of each set
in H, i.e., X ∩ Y 6= ∅ for each Y ∈ H.

Hitting Set
Input: A set system S = (V,H) and an integer k
Parameter: k
Question: Does S have a hitting set of size at most k?

• Show that Hitting Set is W[2]-hard.

Hint: Exploit a duality between sets and elements in set covers and hitting sets.

6

4 Further Reading

• Chapter 13, Fixed-parameter Intractability in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lok-
shtanov, Dániel Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

• Chapter 13, Parameterized Complexity Theory in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms.
Oxford University Press, 2006.

• Elements of Chapters 20–23 in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

7

	Reminder: Polynomial Time Reductions and NP-completeness
	Parameterized Complexity Theory
	Parameterized reductions
	Parameterized complexity classes

	Case studies
	Further Reading

