Goal

Deductive reasoning in language as close as possible to full FOL

$$
\neg, \wedge, \vee, \exists, \forall
$$

Knowledge Level:

given KB, α, determine if $\mathrm{KB} \mid=\alpha$.
or given an open $\alpha\left(x_{1}, x_{2}, \ldots x_{n}\right)$, find $t_{1}, t_{2}, \ldots t_{n}$ such that KB $1=\alpha\left(t_{1}, t_{2}, \ldots t_{n}\right)$

When KB is finite $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$

	KB $\mid=\alpha$
iff	$I=\left[\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{k}\right) \supset \alpha\right]$
iff	KB $\cup\{\neg \alpha\}$ is unsatisfiable
iff	KB $\cup\{\neg \alpha\}$ I FALSE

So want a procedure to test for validity, or satisfiability, or for entailing FALSE.

Will now consider such a procedure
first: without quantifiers

Clausal Representation

Formula $=$ set of clauses
Clause $=$ set of literals
Literal $=$ atomic sentence or its negation
positive literal and negative literal
Notation:
If l is a literal, then $\neg l$ is its complement

$$
p \Rightarrow \neg p \quad \neg p \Rightarrow p
$$

To distinguish clauses from formulas:

- [and] for clauses: [$p, \neg r, s$]
- \{ and \} for formulas: $\{[p, \neg r, s],[p, r, s],[\neg p]\}$
[] is the empty clause $\}$ is the empty formula So $\}$ is different from $\{[]\}$!

Interpretation:
Formula understood as conjunction of clauses
Clause understood as disjunction of literals
Literals understood normally
So:
$\{[p, \neg q],[r],[s]\}$ is representation of $((p \vee \neg q) \wedge r \wedge s)$
[] is a representation of FALSE
\{\} is a representation of TRUE

CNF and DNF

Every propositional wff α can be converted into a formula α^{\prime} in Conjunctive Normal Form (CNF) in such a way that $\mid=\alpha \equiv \alpha^{\prime}$.

1. eliminate \supset and \equiv
using $(\alpha \supset \beta)$ B $(\neg \alpha \vee \beta)$ etc.
2. push \neg inward
using $\neg(\alpha \wedge \beta) \beta(\neg \alpha \vee \neg \beta)$ etc.
3. distribute \vee over \wedge
using $((\alpha \wedge \beta) \vee \gamma) B((\alpha \vee \gamma) \wedge(\beta \vee \gamma))$
4. collect terms
using $(\alpha \vee \alpha) \beta \alpha$ etc.
Result is a conjunction of disjunction of literals.
an analogous procedure produces DNF, a disjunction of conjunction of literals

We can identify CNF wffs with clausal formulas

$$
(p \vee \neg q \vee r) \wedge(s \vee \neg r) ß\{[p, \neg q, r],[s, \neg r]\}
$$

So: given a finite KB and α, to find out if
KB |= α, it will be sufficient to
1.put ($\mathrm{KB} \wedge \neg \alpha$) into CNF , as above
2.determine the satisfiability of clauses

KR \& R © Brachman \& Levesque 2005

Resolution rule of inference

Given two clauses, infer a new clause:

From clause	$\{p\} \cup C_{1}$,
and	$\{\neg p\} \cup C_{2}$,
infer clause	$C_{1} \cup C_{2}$.

$C_{1} \cup C_{2}$ is called a resolvent of input clauses with respect to p.

Example:
From clauses $[w, p, q]$ and $[w, s, \neg p]$, have $[w, q, s]$ as resolvent wrt p.

Special Case:

[p] and [$\neg p$] resolve to []
C_{1} and C_{2} are empty
A derivation of a clause c from a set S of clauses is a sequence $c_{1}, c_{2}, \ldots, c_{n}$ of clauses, where the last clause $c_{n}=c$, and for each c_{i}, either

$$
\text { 1. } c_{i} \in S, \quad \text { or }
$$

2. c_{i} is a resolvent of two earlier clauses in the derivation

Write: $S \longmapsto c$ if there is a derivation

Rationale

Resolution is a symbol-level rule of inference, but has a connection to knowledge-level logical interpretations

Resolvent is entailed by input clauses.
Suppose $\boldsymbol{I} \mid=(p \vee \alpha)$ and $\boldsymbol{I} \mid=(\neg p \vee \beta)$
Case 1: $\quad I=p$ then $I \mid=\beta$, so $I \mid=(\alpha \vee \beta)$.

Case 2: $\quad I \mid \neq p$ then $I \mid=\alpha$, so $I \mid=(\alpha \vee \beta)$.

Either way, $\quad I \mid=(\alpha \vee \beta)$.
So: $\quad\{(p \vee \alpha),(\neg p \vee \beta)\} \mid=(\alpha \vee \beta)$.

Special case:

$[p]$ and $[\neg p]$ resolve to [] ,
so $\{[p],[\neg p]\} \mid=$ FALSE
that is: $\{[p],[\neg p]\}$ is unsatisfiable

Derivations and entailment

Can extend the previous argument to derivations:

If $S \vdash c$ then $S \mid=c$
Proof: by induction on the length of the derivation. Show (by looking at the two cases) that $S \mid=c_{i}$.

But the converse does not hold in general
Can have $S \mid=c$ without having $S \vdash c$.
Example: $\{[\neg p]\} \mid=[\neg p, \neg q]$
i.e. $\neg p$ に $(\neg p \vee \neg q)$
but no derivation
However, ...
Resolution is sound and complete for [] !
Theorem: $S \vdash[]$ iff $S \mid=[]$
Result will carry over to quantified clauses (later)
So for any set S of clauses:
S is unsatisfiable iff $S \vdash[]$.
Provides method for determining satisfiability: Search all derivations to see if [] is produced Also provides method for determining all entailments

A procedure for entailment

To determine if $\mathrm{KB} \mid=\alpha$,

- put KB, $\neg \alpha$ into CNF to get S, as before
- check if S - [].

If $\mathrm{KB}=\{ \}$, then we are testing the validity of α.

Non-deterministic procedure

1. Check if [] is in S. If yes, then return UNSATISFIABLE
2. Check if there are two clauses c_{1} and c_{2} in S such that they resolve to produce a c_{3} not already in S. If no, then return SATISFIABLE
3.

Add c_{3} to S and go to 1 .

Note: need only convert KB to CNF once

- can handle multiple queries with same KB
- after addition of new fact α, can simply add new clauses α^{\prime} to KB

KR \& R © Brachman \& Levesque 2005

Example 1

KB:
FirstGrade
FirstGrade \supset Child
Child \wedge Male \supset Boy
Kindergarten \supset Child
Child \wedge Female \supset Girl
Female
Show that $\mathrm{KB} \mid=$ Girl

Example 2

KB:

(Rain \vee Sun)
(Sun \supset Mail)
$(($ Rain \vee Sleet $) \supset$ Mail $)$

Show KB |= Mail
[\neg Sleet, Mail]
[Rain,Sun] [\neg Sun, Mail] [\neg Rain, Mail] [\neg Mail]

not in S has 2 parents

Similarly $K B \mid \neq$ Rain
Can enumerate all clauses given \neg Rain and [] will not be generated

Quantifiers

Clausal form as before, but atom is
$P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where t_{i} may contain variables
Interpretation as before, but variables are understood universally

Example: $\{[P(x), \neg R(a, f(b, x))],[Q(x, y)]\}$
interpreted as
$\forall x \forall y\{[R(a, f(b, x)) \supset P(x)] \wedge Q(x, y)\}$
Substitutions: $\theta=\left\{v_{1} / t_{1}, v_{2} / t_{2}, \ldots, v_{n} / t_{\mathrm{n}}\right\}$
Notation: If l is a literal and θ is a substitution, then $l \theta$ is the result of the substitution (and similarly, $c \theta$ where c is a clause)

Example: $\theta=\{x / a, y / g(x, b, z)\}$

$$
P(x, z, f(x, y)) \theta=P(a, z, f(a, g(x, b, z)))
$$

A literal is ground if it contains no variables.
A literal l is an instance of l^{\prime},
if for some $\theta, l=l^{\prime} \theta$.

Generalizing CNF

Resolution will generalize to handling variables
But how to convert wffs to CNF?
Need three additional steps:

1. eliminate \supset and \equiv
2. push \neg inward
using also $\neg \forall x . \alpha ß \quad \exists x . \neg \alpha$ etc.
3. standardize variables: each quantifier gets its own variable
```
e.g. }\existsx[P(x)]\wedgeQ(x)ß\existsz[P(z)]
Q(x) variable
```

4. eliminate all existentials
(discussed later)
5. move universals to the front
using $\forall x[\alpha] \wedge \beta$ ß $\forall x[\alpha \wedge$
$\beta] \quad$ where β does not use x
6. distribute \vee over \wedge
7. collect terms

Get universally quantified conjunction of disjunction of literals
then drop the quantifiers...
KR \& R © Brachman \& Levesque 2005
Resolution

First-order resolution

Main idea:
a literal (with variables) stands for all its instances; will allow all such inferences
So given:
$[P(x, a), \neg Q(x)]$ and $[\neg P(b, y), \neg R(b, f(y))]$,
want to infer: $[\neg Q(b), \neg R(b, f(a))]$
since $[P(x, a), \neg Q(x)]$ has $[P(b, a), \neg Q(b)]$ and $[\neg P(b, y), \neg R(b, f(y))]$ has $[\neg P(b, a)$,
$\neg R(b, f(a))]$
Resolution:
Given clauses: $\left\{l_{1}\right\} \cup C_{1}$ and $\left\{\neg l_{2}\right\} \cup C_{2}$
Rename variables, so that distinct in two clauses.
For any θ such that $l_{1} \theta=l_{2} \theta$, can infer $\left(C_{1} \cup C_{\text {e }}\right.$) ${ }^{\text {etmple below }}$

We say that l_{1} unifies with l_{2} and
that θ is a unifier of the two literals
Resolution derivation: as before still ignoring =
Theorem: S - [] iff $S \mid=[]$
iff S is unsatisfiable

Example 3

KB:
$\forall x \operatorname{GradStudent}(x) \supset \operatorname{Student}(x)$
$\forall x \operatorname{Student}(x) \supset \operatorname{HardWorker}(x)$
GradStudent(sue)
Q: HardWorker(sue)

KR \& R © Brachman \& Levesque 2005
Resolution

The 3 block example

$\mathrm{KB}=\{\operatorname{On}(\mathrm{a}, \mathrm{b}), \operatorname{On}(\mathrm{b}, \mathrm{c}), \operatorname{Green}(\mathrm{a}), \neg \operatorname{Green}(\mathrm{c})\}$ already in CNF
$\mathrm{Q}=\exists x \exists y[\operatorname{On}(x, y) \wedge \operatorname{Green}(x) \wedge \neg \operatorname{Green}(y)]$
Note: $\neg \mathrm{Q}$ has no existentials to eliminate yields $\{[\neg \operatorname{On}(x, y), \neg \operatorname{Green}(x), \operatorname{Green}(y)]\}$ in CNF

Arithmetic

KB :
$\operatorname{Plus}($ zero $, x, x)$
$\operatorname{Plus}(x, y, z) \supset \operatorname{Plus}(\operatorname{succ}(x), y, \operatorname{succ}(z))$

Q: $\quad \exists u \operatorname{Plus}(2,3, u)$
where for readability, we use
0 for zero,
3 for succ(succ(succ(zero))) etc.
$[\neg \operatorname{Plus}(x, y, z), \operatorname{Plus}(\operatorname{succ}(x), y, \operatorname{succ}(z))]$
$[\neg \operatorname{Plus}(2,3, u)]$

Can find the answer in the derivation
$u / \operatorname{succ}(\operatorname{succ}(3))$
i.e $u / 5$
[] Rename variables
Can derive Plus $(2,3,5)$

Answer predicates

In full FOL, have possibility of deriving $\exists x P(x)$ without being able to derive $P(t)$ for any t.
e.g. the three-blocks problem
$\exists x \exists y[\operatorname{On}(x, y) \wedge \operatorname{Green}(x) \wedge \neg \operatorname{Green}(y)]$
but cannot derive which block is which
Solution: answer-extraction process

- replace query $\exists x P(x)$ by $\exists x[P(x) \wedge \neg A(x)]$
where A is a new predicate symbol called the answer predicate
- instead of deriving [], derive any clause containing just the answer predicate
- can always convert a derivation of []

Example KB:
\{Student(john), Student(jane), Happy(john)\}
Q: $\exists x[\operatorname{Student}(x) \wedge \operatorname{Happy}(x)]$

Disjunctive answers

Example KB:

\{Student(john), Student(jane), $[$ Happy(john) \vee Happy(jane) $]\}$

Q: $\quad \exists x[\operatorname{Student}(x) \wedge \operatorname{Happy}(x)]$

Note:

- can have variables in answer
- need to watch for Skolem symbols... (next)

Skolemization

So far, converting wff to CNF ignored existentials

$$
\text { e.g. } \exists x \forall y \exists z P(x, y, z)
$$

Idea: names for individuals claimed to exist, called Skolem constant and function symbols
there exists an x, call it a
for each y, there is a z, call it $f(y)$

$$
\text { get } \forall y P(a, y, f(y))
$$

In general:
$\forall x_{1}\left(\ldots \forall x_{2}\left(\ldots \forall x_{n}(\ldots \exists y[\ldots y \quad ..] \ldots) \ldots\right) \ldots\right)$
is replaced by
$\forall x_{1}\left(\ldots \forall x_{2}\left(\ldots \forall x_{n}\left(\ldots \quad\left[\ldots f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \ldots\right] \ldots\right) \ldots\right) \ldots\right)$
where f is a new function symbol that appears nowhere else
Skolemization does not preserve equivalence
e.g. $\mid \neq \exists x P(x) \equiv P(a)$

But it does preserve satisfiability
α is satisfiable iff α^{\prime} is satisfiable
where α^{\prime} is the result of skolemization

Sufficient for resolution!

Variable dependence

Show that $\exists x \forall y R(x, y) \mid=\forall y \exists x R(x, y)$

show $\{\exists x \forall y R(x, y), \neg \forall y \exists x R(x, y)\}$ unsatisfiable
$\exists x \forall y R(x, y)$ ß $\forall y R(a, y)$
$\neg \forall y \exists x R(x, y)$ ß $\exists y \forall x \neg R(x, y)$ ß $\forall x \neg R(x, b)$
then $\{[R(a, y)],[\neg R(x, b)]\} \vdash[]$ with $\{x / a, y / b\}$.

Show that $\forall y \exists x R(x, y) \mid \neq \exists x \forall y R(x, y)$
show $\{\forall y \exists x R(x, y), \neg \exists x \forall y R(x, y)\}$ satisfiable
$\forall y \exists x R(x, y)$ ß $\forall y R(f(y), y)$
$\neg \exists x \forall y R(x, y)$ ß $\forall x \exists y \neg R(x, y)$ ß $\forall x \neg R(x, \mathrm{~g}(x))$
then get $\{[R(f(y), y)],[\neg R(x, g(x)]\}$
where the two literals do not unify

Note:
important to get dependence of variables correct $R(f(y), y)$ vs. $R(a, y)$ in the above
first argument depends on second one here

A problem

KB: LessThan $(\operatorname{succ}(x), y) \supset \operatorname{LessThan}(x, y)$
Q: LessThan(zero,zero)

Should fail since $K B \mid \neq Q$
$[\operatorname{LessThan}(x, y), \neg \operatorname{LessThan}(\operatorname{succ}(x), y)]$

Infinite branch of resolvents
cannot use a simple depth-first procedure to search for []

Undecidability

Is there a way to detect when this happens?
No! FOL is very powerful
can be used as a full programming language just as there is no way to detect in general when a program is looping

There can be no procedure that does this:

Proc[Clauses] =
If Clauses are unsatisfiable then return YES else return NO

However: Resolution is complete
some branch will contain [], for unsat clauses

So breadth-first search guaranteed to find []
search may not terminate on satisfiable clauses

KR \& R © Brachman \& Levesque 2005
Resolution

Overly specific unifiers

In general, no way to guarantee efficiency, or even termination
later: put control into users' hands
one major way:
reduce redundancy in search, by keeping search as general as possible

Example

$$
\ldots, P(g(x), f(x), z)] \quad[\neg P(y, f(w), a), \ldots
$$

unified by

$$
\theta_{1}=\{x / b, y / g(b), z / a, w / b\}
$$

gives $P(g(b), f(b), a)$
and by

$$
\begin{aligned}
\theta_{2}= & \{x / f(z), y / g(f(z)), z / a, w / f(z)\} \\
& \text { gives } P(g(f(z)), f(z), a) .
\end{aligned}
$$

Might not be able to derive [] from clauses having overly specific substitutions
wastes time in search!

Most general unifiers

θ is a most general unifier of literals l_{1} and l_{2} iff

1. $\quad \theta$ unifies l_{1} and l_{2}
2. for any other unifier θ^{\prime}, there is a another substitution θ^{*} such that $\theta^{\prime}=\theta \theta^{*}$
Note: composition $\theta \theta^{\star}$ requires applying θ^{\star} to terms in θ for previous example, an MGU is $\theta=\{x / w, y / g(w), z / a\}$
for which

$$
\theta_{1}=\theta\{w / b\}
$$

$$
\theta_{2}=\theta\{w / f(z)\}
$$

Theorem: Can limit search to MGUs only without loss of completeness (with certain caveats)

Computing an MGU, given a set of lits $\left\{l_{i}\right\}$

1. Start with $\theta=\{ \}$.
2. If all the $l_{i} \theta$ are identical, then done; otherwise, get disagreement set, $D S$
e.g $P(a f f(a, g(z), \ldots P(a, f(a, u, \ldots$ disagreement set, $D S=\{u, g(z)\}$
3. Find a variable $v \in D S$, and a term $t \in D S$ not containing v. If not, fail.
4. $\theta=\theta\{v / t\}$
5. Go to 2

Note: there is a better linear algorithm

Herbrand Theorem

Some 1st-order cases can be handled by converting them to a propositional form

Given a set of clauses S

- the Herbrand universe of S is the set of all terms formed using only the function symbols (and constants, at least one) in S
for example, if S uses (unary) f, and c, d,
$U=\{c, d, f(c), f(d), f(f(c)), f(f(d)), f(f(f(c))), \ldots\}$
- the Herbrand base of S is
$\{c \theta \mid c \in S$ and θ replaces the variables in c by terms from the Herbrand universe\}

Theorem: S is satisfiable iff Herbrand base is (applies to Horn clauses also)

Herbrand base has no variables, and so is essentially propositional, though usually infinite

- finite, when Herbrand universe is finite
can use propositional methods (guaranteed to terminate)
- sometimes other "type" restrictions can be used to
keep the Herbrand base finite
include $f(t)$ only if t is the correct type

Resolution is difficult!

First-order resolution is not guaranteed to terminate.

What can be said about the propositional case?
Recently shown by Haken that there are unsatisfiable clauses $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ such that the shortest derivation of [] contains on the order of 2^{n} clauses
Even if we could always find a derivation immediately, the most clever search procedure will still require exponential time on some problems

Problem just with resolution?

Probably not.
Determining if set of clauses is satisfiable shown by Cook to be NP-complete
no easier than an extremely large variety of computational tasks
any search task where what is searched for can be verified in polynomial time can be recast as a satisfiability problem
" satisfiability
" does graph of cities allow for a full tour of size k miles?
" can N queens be put on an $N \times N$ chessboard all safely?
" ..
Satisfiability is strongly believed by most people to be unsolvable in polynomial time

KR \& R © Brachman \& Levesque 2005
Resolution

Implications for KR

Problem: want to produce entailments of KB as needed for immediate action
full theorem-proving may be too difficult for KR!
need to consider other options ...

- giving control to user
procedural representations (later)
- less expressive languages
e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait e.g. mathematical theorem proving, where we only care about specific formula
Best to hope for in general: reduce redundancy
refinements to resolution to improve search
Main example: MGU, as before
but many other possibilities
need to be careful to preserve completeness
ATP: automated theorem proving area that studies strategies for proving difficult theorems main application: mathematics, but relevance also to KR

Strategies

1. Clause elimination

- pure clause
contains literal l such that $\neg l$ does not appear in any other clause
clause cannot lead to []
- tautology
clause with a literal and its negation any path to [] can bypass tautology
- subsumed clause
a clause such that one with a subset of its literals is already present
path to [] need only pass through short clause
can be generalized to allow substitutions

2. Ordering strategies
many possible ways to order search, but best and simplest is

- unit preference
prefer to resolve unit clauses first
Why? Given unit clause and another clause, resolvent is a smaller one B []

Strategies 2

3. Set of support

KB is usually satisfiable, so not very useful to resolve among clauses with only ancestors in KB
contradiction arises from interaction with $\neg Q$
always resolve with at least one clause that has an ancestor in \neg Q
preserves completeness (sometimes)

4. Connection graph

pre-compute all possible unifications
build a graph with edges between any two unifiable literals of opposite polarity
label edge with MGU

Resolution procedure:
repeatedly:

- select link
- compute resolvent
- inherit links from parents after substitution

Resolution as search:
find sequence of links L_{1}, L_{2}, \ldots producing []

Strategies 3

5. Special treatment for equality

instead of using axioms for = relexitivity, symmetry, transitivity, substitution of equals for equals
use new inference rule: paramodulation
from $\{(t=s)\} \cup C_{1}$ and $\left\{P\left(\ldots t^{\prime} \ldots\right)\right\} \cup C_{2}$ where $t \theta=t^{\prime} \theta$
infer $\{P(\ldots s \ldots)\} \theta \cup C_{1} \theta \cup C_{2} \theta$.
collapses many resolution steps into one see also: theory resolution (later)
[father(john)=bill] [Married(father $(x), \operatorname{mother}(x))]$

[Married(bill,mother(john))]
6. Sorted logic
terms get sorts:
x : Male mother:[Person \rightarrow Female]
keep taxonomy of sorts
refuse to unify $P(s)$ with $P(t)$ unless sorts are compatible
assumes only "meaningful" paths will lead to []
KR \& R © Brachman \& Levesque 2005

Finally...

7. Directional connectives

given $[\sim p, q]$, can interpret as either
from p, infer $q \quad$ (forward)
to prove q, prove p (backward)
procedural reading of \supset
In 1st case:
would only resolve $[\neg p, q]$ with $[p, \ldots]$ producing $[q, \ldots]$

In 2nd case:
would only resolve $[\neg p, q]$ with $[\neg q, \ldots]$ producing $[\neg p, \ldots]$

Intended application:
forward: $\operatorname{Battleship}(x) \supset \operatorname{Gray}(x)$
do not want to try to prove something is
gray by proving it is a battleship
backward: $\operatorname{Human}(x) \supset \operatorname{Has}(x$, spleen $)$
do not want to conclude from someone being human, that she has each property
the basis for the procedural representations

