Exercise sheet 2b

COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Exercise 1. Consider the following approximation algorithm for the Vertex Cover optimisation problem.

- $S \leftarrow \emptyset$
- As long as $E \neq \emptyset$, do
 - Select an arbitary edge $uv \in E$
 - $-S \leftarrow S \cup \{u,v\}$
 - $-G \leftarrow G \{u, v\}$
- \bullet Return S

Show that this is a 2-approximation algorithm for Vertex Cover.

Exercise 2. A k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ if $uv \in E$.

SAVING COLORS

Input: Graph G, integer k

Parameter:

Question: Does G have a (n-k)-coloring?

Design a kernel for SAVING COLORS with O(k) vertices.

Recommendation: use the Crown Lemma.