
Introduction to ROS
(continued)

COMP3431/COMP9434
Robot Software Architectures

Turtlebot Setup – Example
The Turtlebot's Raspberry Pi processor is limited so we want to off-load
as much processing as possible to an external workstation (or VM).

Turtlebot Waffle Pi
IP: 192.168.1.10

Workstation/VM
IP: 192.168.1.20

Turtlebot Setup – Step 1
Set ROS_MASTER and ROS_HOSTNAME
for each computer.

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

Turtlebot Setup – Step 2
Spawn master in new terminal on workstation:

$ roscore

* roscore spawns master but also parameter
server and logging outputs (not shown here). master

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

Turtlebot Setup – Step 3

master

Run turtlebot startup in terminal on Joule:

$ roslaunch comp3431 turtlebot.launch

What this does:
● Spawns nodes to talk to hardware

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

LIDAR

camera
base

Turtlebot Setup – Step 3

What this does:

● Spawns nodes to talk to hardware

● Nodes register with master

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

Run turtlebot startup in terminal on Joule:
$ roslaunch comp3431 turtlebot.launch

LIDAR

camera
base

master

Turtlebot Setup – Step 3

What this does:

● Spawns nodes to talk to hardware

● Nodes register with master

● base subscribes to /cmd_vel topic

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

/cmd_vel

Run turtlebot startup in terminal on Joule:
$ roslaunch comp3431 turtlebot.launch

LIDAR

camera
base

master

Turtlebot Setup – Step 4
Run turtlebot teleop in workstation terminal:

$ roslaunch turtlebot_teleop keyboard_teleop.launch

What this does:
● Spawns node to listen to keyboard

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

kbd_ctl

/cmd_vel

LIDAR

camera
base

master

Turtlebot Setup – Step 4

What this does:

● Spawns node to listen to keyboard

● Node registers with master

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

/cmd_vel

Run turtlebot teleop in workstation terminal:
$ roslaunch turtlebot_teleop keyboard_teleop.launch

LIDAR

Camera
base

master

kbd_ctl

Turtlebot Setup – Step 4

What this does:

● Spawns node to listen to keyboard

● Node registers with master

● kbd_ctl publishes to /cmd_vel topic

Turtlebot Waffle Pi
IP: 192.168.1.10

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.10

Workstation/VM
IP: 192.168.1.20

ROS_MASTER_URI=192.168.1.20:11311
ROS_HOSTMAME=192.168.1.20

/cmd_vel

Run turtlebot teleop in workstation terminal:
$ roslaunch turtlebot_teleop keyboard_teleop.launch

LIDAR

camera
base

master

kbd_ctl

Frames of Reference
● ROS standardises the transformation model between different coordinate frames of

reference.
● Right Hand Rule, X forward (XYZ ↔ RGB)

● Tree structure:
– /map

● /base_link
– /base_footprint
– /laser

● Example: laser detected object is relative to laser frame. Need to transform to map
coordinate to know where it is on the map.

ROS Tools and Programs – 1
● Often first thing you run:

– Spawns ROS master – already explained

– Creates a logging node (listening on topic /rosout).
– Parameter server (http://wiki.ros.org/Parameter%20Server):

● Shared dictionary for storing runtime parameters

● Provides flexibility for storing configuration data

● Hierarchical structure (don't confuse with topic names or frames).
● Allows private names – configuration specific to a single node.

$ roscore

ROS Tools and Programs – 2
● What is the difference between roslaunch and rosrun?
● What is going on when I run:

– If ROS_MASTER is local and no ROS master is running, then run roscore.
– Execute instructions in turtlebot.launch in comp3431/launch directory (for syntax of

launch file see http://wiki.ros.org/roslaunch/XML)
● A weird mix of XML and shell scripting

● … let's look at comp3431/launch/turtlebot.launch

● node tag in includes/laser.launch executes rosrun with appropriate parameters.

● Note: the “_” - for private parameters.

$ rosrun lidar_node lidar_node _frame_id:=”/lidar” ...

$ roslaunch comp3431 turtlebot.launch

ROS Tools and Programs – 3
● To debug the connections between nodes use:

– Visualises the node graph – and topic connections

● Rviz is the main visualisation tool for ROS:

– Provides plugins architecture for visualising different topics:
● Videos

● Map of environment and localised robot

● Point cloud within the map

● Example: https://www.youtube.com/watch?v=25nnJ64ED5Q

$ rqt_graph

$ rosrun rviz rviz

ROS Tools and Programs – 4
● Possible to save the data produced by topics for later analysis and playback:

– Creates a time stamped bag file in the current directory.
– Warning: “-a” records all topics so will generate a lot of data.

● Often useful to only record only direct sensor inputs (e.g., laser scans and timing) because the other topics will be
generated from processing sensor data.

● To replay:

● Useful if you are testing different interchangeable node (e.g., mapping with gmapping, hector SLAM, or
Cartographer).

● Note: SLAM (Simultaneous Localisation and Mapping) algorithms build a map while at the same time localising.
Very widely used in robotics.

$ rosbag record -a

$ rosbag play <bagfile>

ROS Tools – Simulator
● Two standard simulators; Stage (2D) and Gazebo (3D)
● For Turtlebot see: http://wiki.ros.org/turtlebot_simulator
● The Gazebo guide - easy guide to get simulator up and running.
● Follow the install instructions, then in different terminals run:

● … see video

$ roslaunch turtlebot_gazebo turtlebot_world.launch

$ roslaunch turtlebot_teleop keyboard_teleop.launch

$ roslaunch turtlebot_rviz_launchers view_robot.launch

Many Different Sensors
● Laser Scanner
● Camera
● IR Cameras
● Depth Cameras
● Motor
● Pressure Sensor
● Compass
● Accelerometer
● IMU (Inertial Measurement Unit) – detects linear acceleration using accelerometer

and rotation using gyroscope
● Audio
ROS provides standardised data structures for some of these sensors.

Laser Scanners
● A laser is rotated

through a plane
● Distance (& intensity)

measurements taken
periodically

● 180-270 degrees

sensor_msgs/LaserScan

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
float32 angle_min
float32 angle_max
float32 angle_increment
float32 time_increment
float32 scan_time
float32 range_min
float32 range_max
float32[] ranges
float32[] intensities

Cameras
● Stream images
● Various encodings

used (RGB, Mono,
UYVY, Bayer)

● ROS has no conversion
functions

sensor_msgs/Image

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

#include <sensor_msgs/image_encodings.h>

Depth Cameras
● Usually produce

Mono16 images
● Typically turned into

point clouds
● Depth measurements

can be radial or axial

sensor_msgs/PointCloud

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
geometry_msgs/Point32[] points
 float32 x
 float32 y
 float32 z
sensor_msgs/ChannelFloat32[] channels
 string name
 float32[] values

Motor Positions
● Many motors report

their positions
● Used to produce

transformations
between frames of
reference

sensor_msgs/JointState

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
string[] name
float64[] position
float64[] velocity
float64[] effort

Lab Exercise
● Modify simple publisher and subscriber from

Lecture 1:
– Class member function callbacks.
– Use Timer to publish at a specific rate.

